These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 35868454)

  • 21. Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models.
    Jiang D; Wu Z; Hsieh CY; Chen G; Liao B; Wang Z; Shen C; Cao D; Wu J; Hou T
    J Cheminform; 2021 Feb; 13(1):12. PubMed ID: 33597034
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fingerprint-Enhanced Graph Attention Network (FinGAT) Model for Antibiotic Discovery.
    Choo HY; Wee J; Shen C; Xia K
    J Chem Inf Model; 2023 May; 63(10):2928-2935. PubMed ID: 37167016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-IsnadSet MIS for Sahih Muslim Hadith with chain of narrators, based on multiple ISNAD.
    Farooqi AM; Malick RAS; Shaikh MS; Akhunzada A
    Data Brief; 2024 Jun; 54():110439. PubMed ID: 38756930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Organic Compound Synthetic Accessibility Prediction Based on the Graph Attention Mechanism.
    Yu J; Wang J; Zhao H; Gao J; Kang Y; Cao D; Wang Z; Hou T
    J Chem Inf Model; 2022 Jun; 62(12):2973-2986. PubMed ID: 35675668
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel artificial intelligence protocol to investigate potential leads for diabetes mellitus.
    Gong JN; Zhao L; Chen G; Chen X; Chen ZD; Chen CY
    Mol Divers; 2021 Aug; 25(3):1375-1393. PubMed ID: 33687591
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of combinatorial clustering methods on pharmacological data sets represented by machine learning-selected real molecular descriptors.
    Rivera-Borroto OM; Marrero-Ponce Y; García-de la Vega JM; Grau-Ábalo Rdel C
    J Chem Inf Model; 2011 Dec; 51(12):3036-49. PubMed ID: 22098113
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural networks in building QSAR models.
    Baskin II; Palyulin VA; Zefirov NS
    Methods Mol Biol; 2008; 458():137-58. PubMed ID: 19065809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Qualitative and quantitative structure-activity relationship modelling for predicting blood-brain barrier permeability of structurally diverse chemicals.
    Gupta S; Basant N; Singh KP
    SAR QSAR Environ Res; 2015; 26(2):95-124. PubMed ID: 25629764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Classification of alkaloids according to the starting substances of their biosynthetic pathways using graph convolutional neural networks.
    Eguchi R; Ono N; Hirai Morita A; Katsuragi T; Nakamura S; Huang M; Altaf-Ul-Amin M; Kanaya S
    BMC Bioinformatics; 2019 Jul; 20(1):380. PubMed ID: 31288752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring QSAR models for activity-cliff prediction.
    Dablander M; Hanser T; Lambiotte R; Morris GM
    J Cheminform; 2023 Apr; 15(1):47. PubMed ID: 37069675
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolutionary computation and QSAR research.
    Aguiar-Pulido V; Gestal M; Cruz-Monteagudo M; Rabuñal JR; Dorado J; Munteanu CR
    Curr Comput Aided Drug Des; 2013 Jun; 9(2):206-25. PubMed ID: 23700999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine Learning Methods in Computational Toxicology.
    Baskin II
    Methods Mol Biol; 2018; 1800():119-139. PubMed ID: 29934890
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting penetration across the blood-brain barrier from simple descriptors and fragmentation schemes.
    Zhao YH; Abraham MH; Ibrahim A; Fish PV; Cole S; Lewis ML; de Groot MJ; Reynolds DP
    J Chem Inf Model; 2007; 47(1):170-5. PubMed ID: 17238262
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development and implementation of (Q)SAR modeling within the CHARMMing web-user interface.
    Weidlich IE; Pevzner Y; Miller BT; Filippov IV; Woodcock HL; Brooks BR
    J Comput Chem; 2015 Jan; 36(1):62-7. PubMed ID: 25362883
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 4D-fingerprints, universal QSAR and QSPR descriptors.
    Senese CL; Duca J; Pan D; Hopfinger AJ; Tseng YJ
    J Chem Inf Comput Sci; 2004; 44(5):1526-39. PubMed ID: 15446810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [AI-based QSAR Modeling for Prediction of Active Compounds in MIE/AOP].
    Uesawa Y
    Yakugaku Zasshi; 2020; 140(4):499-505. PubMed ID: 32238631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Word Embedding Distribution Propagation Graph Network for Few-Shot Learning.
    Zhu C; Wang L; Han C
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Persistent spectral hypergraph based machine learning (PSH-ML) for protein-ligand binding affinity prediction.
    Liu X; Feng H; Wu J; Xia K
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33837771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Applications of Quantitative Structure-Activity Relationships (QSAR) based Virtual Screening in Drug Design: A Review.
    Achary PGR
    Mini Rev Med Chem; 2020; 20(14):1375-1388. PubMed ID: 32348219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Analysis of QSAR Research Based on Machine Learning Concepts.
    Keyvanpour MR; Shirzad MB
    Curr Drug Discov Technol; 2021; 18(1):17-30. PubMed ID: 32178612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.