BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35868564)

  • 1. An in vitro reconstitution system to monitor iron transfer to the active site during the maturation of [NiFe]-hydrogenase.
    Soboh B; Adrian L; Stripp ST
    J Biol Chem; 2022 Sep; 298(9):102291. PubMed ID: 35868564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Native mass spectrometry identifies the HybG chaperone as carrier of the Fe(CN)
    Arlt C; Nutschan K; Haase A; Ihling C; Tänzler D; Sinz A; Sawers RG
    Sci Rep; 2021 Dec; 11(1):24362. PubMed ID: 34934150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [NiFe]-hydrogenase maturation in vitro: analysis of the roles of the HybG and HypD accessory proteins1.
    Soboh B; Lindenstrauss U; Granich C; Javed M; Herzberg M; Thomas C; Stripp ST
    Biochem J; 2014 Dec; 464(2):169-77. PubMed ID: 25184670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HypD is the scaffold protein for Fe-(CN)2CO cofactor assembly in [NiFe]-hydrogenase maturation.
    Stripp ST; Soboh B; Lindenstrauss U; Braussemann M; Herzberg M; Nies DH; Sawers RG; Heberle J
    Biochemistry; 2013 May; 52(19):3289-96. PubMed ID: 23597401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteolytic cleavage orchestrates cofactor insertion and protein assembly in [NiFe]-hydrogenase biosynthesis.
    Senger M; Stripp ST; Soboh B
    J Biol Chem; 2017 Jul; 292(28):11670-11681. PubMed ID: 28539366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exchange of a Single Amino Acid Residue in the HybG Chaperone Allows Maturation of All H
    Haase A; Sawers RG
    Front Microbiol; 2022; 13():872581. PubMed ID: 35422773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterologous complementation studies in Escherichia coli with the Hyp accessory protein machinery from Chloroflexi provide insight into [NiFe]-hydrogenase large subunit recognition by the HypC protein family.
    Hartwig S; Thomas C; Krumova N; Quitzke V; Türkowsky D; Jehmlich N; Adrian L; Sawers RG
    Microbiology (Reading); 2015 Nov; 161(11):2204-19. PubMed ID: 26364315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Insight into [NiFe] Hydrogenase Maturation by Transient Complexes between Hyp Proteins.
    Miki K; Atomi H; Watanabe S
    Acc Chem Res; 2020 Apr; 53(4):875-886. PubMed ID: 32227866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordination of Synthesis and Assembly of a Modular Membrane-Associated [NiFe]-Hydrogenase Is Determined by Cleavage of the C-Terminal Peptide.
    Thomas C; Muhr E; Sawers RG
    J Bacteriol; 2015 Sep; 197(18):2989-98. PubMed ID: 26170410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A redox-active HybG-HypD scaffold complex is required for optimal ATPase activity during [NiFe]-hydrogenase maturation in Escherichia coli.
    Haase A; Sawers RG
    FEBS Open Bio; 2023 Feb; 13(2):341-351. PubMed ID: 36602404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Extended C-Terminal α-Helix of the HypC Chaperone Restricts Recognition of Large Subunit Precursors by the Hyp-Scaffold Machinery during [NiFe]-Hydrogenase Maturation in Escherichia coli.
    Thomas C; Waclawek M; Nutschan K; Pinske C; Sawers RG
    J Mol Microbiol Biotechnol; 2018; 28(2):87-97. PubMed ID: 29996137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The importance of iron in the biosynthesis and assembly of [NiFe]-hydrogenases.
    Pinske C; Sawers RG
    Biomol Concepts; 2014 Mar; 5(1):55-70. PubMed ID: 25372742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The complex between hydrogenase-maturation proteins HypC and HypD is an intermediate in the supply of cyanide to the active site iron of [NiFe]-hydrogenases.
    Blokesch M; Albracht SP; Matzanke BF; Drapal NM; Jacobi A; Böck A
    J Mol Biol; 2004 Nov; 344(1):155-67. PubMed ID: 15504408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The iron-sulfur-containing HypC-HypD scaffold complex of the [NiFe]-hydrogenase maturation machinery is an ATPase.
    Nutschan K; Golbik RP; Sawers RG
    FEBS Open Bio; 2019 Dec; 9(12):2072-2079. PubMed ID: 31614069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient electron transfer from hydrogen to benzyl viologen by the [NiFe]-hydrogenases of Escherichia coli is dependent on the coexpression of the iron-sulfur cluster-containing small subunit.
    Pinske C; Krüger S; Soboh B; Ihling C; Kuhns M; Braussemann M; Jaroschinsky M; Sauer C; Sargent F; Sinz A; Sawers RG
    Arch Microbiol; 2011 Dec; 193(12):893-903. PubMed ID: 21717143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence the Isc iron-sulfur cluster biogenesis machinery is the source of iron for [NiFe]-cofactor biosynthesis in Escherichia coli.
    Haase A; Arlt C; Sinz A; Sawers RG
    Sci Rep; 2024 Feb; 14(1):3026. PubMed ID: 38321125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron inventory of the iron-sulfur scaffold complex HypCD essential in [NiFe]-hydrogenase cofactor assembly.
    Stripp ST; Oltmanns J; Müller CS; Ehrenberg D; Schlesinger R; Heberle J; Adrian L; Schünemann V; Pierik AJ; Soboh B
    Biochem J; 2021 Sep; 478(17):3281-3295. PubMed ID: 34409988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic Formate and Hydrogen Metabolism.
    Pinske C; Sawers RG
    EcoSal Plus; 2016 Oct; 7(1):. PubMed ID: 27735784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron restriction induces preferential down-regulation of H(2)-consuming over H(2)-evolving reactions during fermentative growth of Escherichia coli.
    Pinske C; Sawers G
    BMC Microbiol; 2011 Aug; 11():196. PubMed ID: 21880124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maturation of [NiFe]-hydrogenases in Escherichia coli: the HypC cycle.
    Blokesch M; Böck A
    J Mol Biol; 2002 Nov; 324(2):287-96. PubMed ID: 12441107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.