These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 35868615)

  • 1. Transient brain-wide coactivations and structured transitions revealed in hemodynamic imaging data.
    Khan AF; Zhang F; Shou G; Yuan H; Ding L
    Neuroimage; 2022 Oct; 260():119460. PubMed ID: 35868615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-wide neural co-activations in resting human.
    Ding L; Shou G; Cha YH; Sweeney JA; Yuan H
    Neuroimage; 2022 Oct; 260():119461. PubMed ID: 35820583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient neuronal coactivations embedded in globally propagating waves underlie resting-state functional connectivity.
    Matsui T; Murakami T; Ohki K
    Proc Natl Acad Sci U S A; 2016 Jun; 113(23):6556-61. PubMed ID: 27185944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct Time-Resolved Brain-Wide Coactivations in Oxygenated and Deoxygenated Hemoglobin.
    Khan AF; Yuan H; Smith ZA; Ding L
    IEEE Trans Biomed Eng; 2024 Aug; 71(8):2463-2472. PubMed ID: 38478444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.
    Yuan H; Zotev V; Phillips R; Drevets WC; Bodurka J
    Neuroimage; 2012 May; 60(4):2062-72. PubMed ID: 22381593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortex-wide neural dynamics predict behavioral states and provide a neural basis for resting-state dynamic functional connectivity.
    Shahsavarani S; Thibodeaux DN; Xu W; Kim SH; Lodgher F; Nwokeabia C; Cambareri M; Yagielski AJ; Zhao HT; Handwerker DA; Gonzalez-Castillo J; Bandettini PA; Hillman EMC
    Cell Rep; 2023 Jun; 42(6):112527. PubMed ID: 37243588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal Origin of the Temporal Dynamics of Spontaneous BOLD Activity Correlation.
    Matsui T; Murakami T; Ohki K
    Cereb Cortex; 2019 Apr; 29(4):1496-1508. PubMed ID: 29522092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-activation patterns in resting-state fMRI signals.
    Liu X; Zhang N; Chang C; Duyn JH
    Neuroimage; 2018 Oct; 180(Pt B):485-494. PubMed ID: 29355767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain-wide functional diffuse optical tomography of resting state networks.
    Khan AF; Zhang F; Yuan H; Ding L
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33946052
    [No Abstract]   [Full Text] [Related]  

  • 10. Frequency-specific functional connectivity in the brain during resting state revealed by NIRS.
    Sasai S; Homae F; Watanabe H; Taga G
    Neuroimage; 2011 May; 56(1):252-7. PubMed ID: 21211570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related changes of whole-brain dynamics in spontaneous neuronal coactivations.
    Shou G; Yuan H; Cha YH; Sweeney JA; Ding L
    Sci Rep; 2022 Jul; 12(1):12140. PubMed ID: 35840643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency-specific coactivation patterns in resting-state and their alterations in schizophrenia: An fMRI study.
    Yang H; Zhang H; Meng C; Wohlschläger A; Brandl F; Di X; Wang S; Tian L; Biswal B
    Hum Brain Mapp; 2022 Aug; 43(12):3792-3808. PubMed ID: 35475569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.
    Yuan H; Ding L; Zhu M; Zotev V; Phillips R; Bodurka J
    Brain Connect; 2016 Mar; 6(2):122-35. PubMed ID: 26414793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating spatial constraint in co-activation pattern analysis to explore the dynamics of resting-state networks: An application to Parkinson's disease.
    Zhuang X; Walsh RR; Sreenivasan K; Yang Z; Mishra V; Cordes D
    Neuroimage; 2018 May; 172():64-84. PubMed ID: 29355770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resting-State Co-activation Patterns as Promising Candidates for Prediction of Alzheimer's Disease in Aged Mice.
    Adhikari MH; Belloy ME; Van der Linden A; Keliris GA; Verhoye M
    Front Neural Circuits; 2020; 14():612529. PubMed ID: 33551755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of global signal regression on characterizing dynamic functional connectivity and brain states.
    Xu H; Su J; Qin J; Li M; Zeng LL; Hu D; Shen H
    Neuroimage; 2018 Jun; 173():127-145. PubMed ID: 29476914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating dynamic individual coactivation patterns based on densely sampled resting-state fMRI data and utilizing it for better subject identification.
    Yang H; Yao X; Zhang H; Meng C; Biswal B
    Brain Struct Funct; 2023 Sep; 228(7):1755-1769. PubMed ID: 37572108
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.