These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35868745)

  • 41. Surface modification of bacterial cellulose aerogels' web-like skeleton for oil/water separation.
    Sai H; Fu R; Xing L; Xiang J; Li Z; Li F; Zhang T
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7373-81. PubMed ID: 25799389
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanoporous polystyrene fibers for oil spill cleanup.
    Lin J; Shang Y; Ding B; Yang J; Yu J; Al-Deyab SS
    Mar Pollut Bull; 2012 Feb; 64(2):347-52. PubMed ID: 22136762
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development and application of an amylopectin-graft-poly(methyl acrylate) solidifier for rapid and efficient containment and recovery of heavy oil spills in aqueous environments.
    Motta FL; Stoyanov SR; Soares JBP
    Chemosphere; 2019 Dec; 236():124352. PubMed ID: 31325825
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Monoglyceride-based organogelator for broad-range oil uptake with high capacity.
    Wang D; Niu J; Wang Z; Jin J
    Langmuir; 2015 Feb; 31(5):1670-4. PubMed ID: 25604733
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hydrogel bowls for cleaning oil spills on water.
    Tran VT; Xu X; Mredha MTI; Cui J; Vlassak JJ; Jeon I
    Water Res; 2018 Nov; 145():640-649. PubMed ID: 30205335
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Robust superhydrophobic/superoleophilic sponge for effective continuous absorption and expulsion of oil pollutants from water.
    Wang CF; Lin SJ
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):8861-4. PubMed ID: 24032484
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultra-fast spill oil recovery using a mesoporous lignin based nanocomposite prepared from date palm pits (Phoenix dactylifera L.).
    Ahamad T; Naushad M; Ruksana ; Alshehri SM
    Int J Biol Macromol; 2019 Jun; 130():139-147. PubMed ID: 30738905
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of a calcium alginate-cellulose nanocrystal-based coating to reduce the impact of oil spills on shorelines.
    Bi H; Mulligan CN; An C; Owens E; Taylor E; McCourt J; Yin J; Feng Q; Chen X; Yue R
    J Hazard Mater; 2022 Aug; 436():129228. PubMed ID: 35739748
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Organogelator-Cellulose Composite for Practical and Eco-Friendly Marine Oil-Spill Recovery.
    Prathap A; Sureshan KM
    Angew Chem Int Ed Engl; 2017 Aug; 56(32):9405-9409. PubMed ID: 28640482
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nylon 6,6 Nonwoven Fabric Separates Oil Contaminates from Oil-in-Water Emulsions.
    Ortega RA; Carter ES; Ortega AE
    PLoS One; 2016; 11(7):e0158493. PubMed ID: 27411088
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pumping through porous hydrophobic/oleophilic materials: an alternative technology for oil spill remediation.
    Ge J; Ye YD; Yao HB; Zhu X; Wang X; Wu L; Wang JL; Ding H; Yong N; He LH; Yu SH
    Angew Chem Int Ed Engl; 2014 Apr; 53(14):3612-6. PubMed ID: 24591265
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis of a Novel Highly Oleophilic and Highly Hydrophobic Sponge for Rapid Oil Spill Cleanup.
    Khosravi M; Azizian S
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25326-33. PubMed ID: 26496649
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A review on the effectiveness of nanocomposites for the treatment and recovery of oil spill.
    Iftekhar S; Deb A; Heidari G; Sillanpää M; Lehto VP; Doshi B; Hosseinzadeh M; Zare EN
    Environ Sci Pollut Res Int; 2023 Feb; 30(7):16947-16983. PubMed ID: 36609763
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis of dicholesteryl organogelator as a green sorbent nanomaterial for oil spill remediation.
    Googol F; Rahmati A
    Sci Rep; 2024 Sep; 14(1):21111. PubMed ID: 39256466
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A sponge heated by electromagnetic induction and solar energy for quick, efficient, and safe cleanup of high-viscosity crude oil spills.
    Li SL; He JH; Li Z; Lu JH; Liu BW; Fu T; Zhao HB; Wang YZ
    J Hazard Mater; 2022 Aug; 436():129272. PubMed ID: 35739787
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of kapok (Ceiba pentandra (L.) Gaertn.) as a natural hollow hydrophobic-oleophilic fibrous sorbent for oil spill cleanup.
    Lim TT; Huang X
    Chemosphere; 2007 Jan; 66(5):955-63. PubMed ID: 16839589
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbon nanofiber based superhydrophobic foam composite for high performance oil/water separation.
    Guo Z; Long B; Gao S; Luo J; Wang L; Huang X; Wang D; Xue H; Gao J
    J Hazard Mater; 2021 Jan; 402():123838. PubMed ID: 33254815
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gelation of Oil upon Contact with Water: A Bioinspired Scheme for the Self-Repair of Oil Leaks from Underwater Tubes.
    Oh H; Yaraghi N; Raghavan SR
    Langmuir; 2015 May; 31(19):5259-64. PubMed ID: 25955654
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessment of milkweed floss as a natural hollow oleophilic fibrous sorbent for oil spill cleanup.
    Panahi S; Moghaddam MK; Moezzi M
    J Environ Manage; 2020 Aug; 268():110688. PubMed ID: 32383656
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Silica-Lignin Hybrid Filler in a Natural Rubber Foam Composite as a Green Oil Spill Absorbent.
    Mardiyati Y; Fauza AN; Rachman OA; Steven S; Santosa SP
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.