BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35868763)

  • 1. Integrating direct reuse and extraction recovery of TEMPO for production of cellulose nanofibrils.
    Chen S; Yue N; Cui M; Penkova A; Huang R; Qi W; He Z; Su R
    Carbohydr Polym; 2022 Oct; 294():119803. PubMed ID: 35868763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of the production of TEMPO-mediated oxidation cellulose nanofibrils by kneading.
    Sanchez-Salvador JL; Xu H; Balea A; Blanco A; Negro C
    Int J Biol Macromol; 2024 Mar; 261(Pt 2):129612. PubMed ID: 38272426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algal growth inhibition test with TEMPO-oxidized cellulose nanofibers.
    Tai R; Ogura I; Okazaki T; Iizumi Y; Mano H
    NanoImpact; 2024 Apr; 34():100504. PubMed ID: 38537806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acid-free preparation and characterization of kelp (Laminaria japonica) nanocelluloses and their application in Pickering emulsions.
    Wu J; Zhu W; Shi X; Li Q; Huang C; Tian Y; Wang S
    Carbohydr Polym; 2020 May; 236():115999. PubMed ID: 32172833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties.
    Soni B; Hassan EB; Schilling MW; Mahmoud B
    Carbohydr Polym; 2016 Oct; 151():779-789. PubMed ID: 27474625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils.
    Shinoda R; Saito T; Okita Y; Isogai A
    Biomacromolecules; 2012 Mar; 13(3):842-9. PubMed ID: 22276990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulose nanofibrils (CNFs) from Ammophila arenaria, a natural and a fast growing grass plant.
    Jebali Z; Nabili A; Majdoub H; Boufi S
    Int J Biol Macromol; 2018 Feb; 107(Pt A):530-536. PubMed ID: 28911807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recycling of TEMPO-mediated oxidation medium and its effect on nanocellulose properties.
    Xu H; Sanchez-Salvador JL; Blanco A; Balea A; Negro C
    Carbohydr Polym; 2023 Nov; 319():121168. PubMed ID: 37567710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct conversion of raw wood to TEMPO-oxidized cellulose nanofibers.
    Kaffashsaie E; Yousefi H; Nishino T; Matsumoto T; Mashkour M; Madhoushi M; Kawaguchi H
    Carbohydr Polym; 2021 Jun; 262():117938. PubMed ID: 33838815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose nanofibrils (CNFs) in uniform diameter: Capturing the impact of carboxyl group on dispersion and Re-dispersion of CNFs suspensions.
    Zai Z; Yan M; Shi C; Zhang L; Lu H; Xiong Z; Ma J
    Int J Biol Macromol; 2022 May; 207():23-30. PubMed ID: 35248603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TEMPO-oxidized cellulose nanofibers.
    Isogai A; Saito T; Fukuzumi H
    Nanoscale; 2011 Jan; 3(1):71-85. PubMed ID: 20957280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainability of cellulose micro-/nanofibers: A comparative life cycle assessment of pathway technologies.
    Arfelis S; Aguado RJ; Civancik D; Fullana-I-Palmer P; Pèlach MÀ; Tarrés Q; Delgado-Aguilar M
    Sci Total Environ; 2023 May; 874():162482. PubMed ID: 36858230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aspirin degradation in surface-charged TEMPO-oxidized mesoporous crystalline nanocellulose.
    Carlsson DO; Hua K; Forsgren J; Mihranyan A
    Int J Pharm; 2014 Jan; 461(1-2):74-81. PubMed ID: 24291076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment.
    Gamelas JA; Pedrosa J; Lourenço AF; Mutjé P; González I; Chinga-Carrasco G; Singh G; Ferreira PJ
    Micron; 2015 May; 72():28-33. PubMed ID: 25768897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing the Amount of Catalyst in TEMPO-Oxidized Cellulose Nanofibers: Effect on Properties and Cost.
    Serra A; González I; Oliver-Ortega H; Tarrès Q; Delgado-Aguilar M; Mutjé P
    Polymers (Basel); 2017 Oct; 9(11):. PubMed ID: 30965860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation.
    Jaušovec D; Vogrinčič R; Kokol V
    Carbohydr Polym; 2015 Feb; 116():74-85. PubMed ID: 25458275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in TEMPO-oxidized cellulose nanofibers: Oxidation mechanism, characterization, properties and applications.
    Tang Z; Lin X; Yu M; Mondal AK; Wu H
    Int J Biol Macromol; 2024 Feb; 259(Pt 1):129081. PubMed ID: 38161007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheology of aqueous dispersions of Laponite and TEMPO-oxidized nanofibrillated cellulose.
    Šebenik U; Lapasin R; Krajnc M
    Carbohydr Polym; 2020 Jul; 240():116330. PubMed ID: 32475587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TEMPO-oxidized cellulose nanofibril film from nano-structured bacterial cellulose derived from the recently developed thermotolerant Komagataeibacter xylinus C30 and Komagataeibacter oboediens R37-9 strains.
    Chitbanyong K; Pisutpiched S; Khantayanuwong S; Theeragool G; Puangsin B
    Int J Biol Macromol; 2020 Nov; 163():1908-1914. PubMed ID: 32976905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO₂ systems in water at pH 4.8 or 6.8.
    Tanaka R; Saito T; Isogai A
    Int J Biol Macromol; 2012 Oct; 51(3):228-34. PubMed ID: 22617623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.