BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35868796)

  • 21. Preparation, characterisation and thermal properties of calcium alginate/n-nonadecane microcapsules fabricated by electro-coextrusion for thermo-regulating textiles.
    Kamali Moghaddam M; Mortazavi SM
    J Microencapsul; 2015; 32(8):737-44. PubMed ID: 26299209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced thermal properties with graphene oxide in the urea-formaldehyde microcapsules containing paraffin PCMs.
    Qiao Z; Mao J
    J Microencapsul; 2017 Feb; 34(1):1-9. PubMed ID: 27903088
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Core-Shell Encapsulation of Lipophilic Substance in Jelly Fig (Ficus awkeotsang Makino) Polysaccharides Using an Inexpensive Acrylic-Based Millifluidic Device.
    Ponrasu T; Yang RF; Chou TH; Wu JJ; Cheng YS
    Appl Biochem Biotechnol; 2020 May; 191(1):360-375. PubMed ID: 31879860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clay Composites for Thermal Energy Storage: A Review.
    Voronin DV; Ivanov E; Gushchin P; Fakhrullin R; Vinokurov V
    Molecules; 2020 Mar; 25(7):. PubMed ID: 32225028
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and Supercooling Modification of Salt Hydrate Phase Change Materials Based on CaCl₂·2H₂O/CaCl₂.
    Xu X; Dong Z; Memon SA; Bao X; Cui H
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773051
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of different soft segments on the formation and properties of binary core microencapsulated phase change materials with polyurea/polyurethane double shell.
    Ma Y; Chu X; Tang G; Yao Y
    J Colloid Interface Sci; 2013 Feb; 392():407-414. PubMed ID: 23201062
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polyurethane/
    Voronin DV; Sitmukhanova E; Mendgaziev RI; Rubtsova MI; Kopitsyn D; Cherednichenko KA; Semenov AP; Fakhrullin R; Shchukin DG; Vinokurov V
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834594
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization and Reliability of Caprylic Acid-Stearyl Alcohol Binary Mixture as Phase Change Material for a Cold Energy Storage System.
    Ayaz H; Chinnasamy V; Cho H
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885573
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Millimeter-sized capsules prepared using liquid marbles: Encapsulation of ingredients with high efficiency and preparation of spherical core-shell capsules with highly uniform shell thickness using centrifugal force.
    Takei T; Yamasaki Y; Yuji Y; Sakoguchi S; Ohzuno Y; Hayase G; Yoshida M
    J Colloid Interface Sci; 2019 Feb; 536():414-423. PubMed ID: 30380441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis.
    Huang J; Lu S; Kong X; Liu S; Li Y
    Materials (Basel); 2013 Oct; 6(10):4758-4775. PubMed ID: 28788358
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study of the Thermal Properties and the Fire Performance of Flame Retardant-Organic PCM in Bulk Form.
    Palacios A; De Gracia A; Haurie L; Cabeza LF; Fernández AI; Barreneche C
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29329212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancing the Melting Process of Shell-and-Tube PCM Thermal Energy Storage Unit Using Modified Tube Design.
    Abderrahmane A; Qasem NAA; Mourad A; Al-Khaleel M; Said Z; Guedri K; Younis O; Marzouki R
    Nanomaterials (Basel); 2022 Sep; 12(17):. PubMed ID: 36080114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Triglycerides as Novel Phase-Change Materials: A Review and Assessment of Their Thermal Properties.
    Ravotti R; Worlitschek J; Pulham CR; Stamatiou A
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33260969
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic Fabrication and Thermal Properties of Microencapsulated N-Hexadecane with a Hybrid Polymer Shell for Thermal Energy Storage.
    Yang L; Dai L; Ye L; Yang R; Lu Y
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cryogenic conditioning of microencapsulated phase change material for thermal energy storage.
    Trivedi GVN; Parameshwaran R
    Sci Rep; 2020 Oct; 10(1):18353. PubMed ID: 33110121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of microencapsulated phase-change materials (MCPCMs) by means of interfacial polycondensation.
    Tseng YH; Fang MH; Tsai PS; Yang YM
    J Microencapsul; 2005 Feb; 22(1):37-46. PubMed ID: 16019889
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bean-Pod-Inspired 3D-Printed Phase Change Microlattices for Solar-Thermal Energy Harvesting and Storage.
    Yang Z; Jia S; Niu Y; Lv X; Fu H; Zhang Y; Liu D; Wang B; Li Q
    Small; 2021 Jul; 17(30):e2101093. PubMed ID: 34145751
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alginate-pectin microcapsules as a potential for folic acid delivery in foods.
    Madziva H; Kailasapathy K; Phillips M
    J Microencapsul; 2005 Jun; 22(4):343-51. PubMed ID: 16214783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recycled Polyethylene/Paraffin Wax/Expanded Graphite Based Heat Absorbers for Thermal Energy Storage: An Artificial Aging Study.
    Abdelrazeq H; Sobolčiak P; Al-Ali Al-Maadeed M; Ouederni M; Krupa I
    Molecules; 2019 Mar; 24(7):. PubMed ID: 30925735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Encapsulation of hygroscopic liquids via polymer precipitation in non-aqueous emulsions.
    Lak SN; Ahmed S; Shamberger PJ; Pentzer EB
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):605-613. PubMed ID: 36027771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.