These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35868936)

  • 1. A general tight-binding based energy decomposition analysis scheme for intermolecular interactions in large molecules.
    Xu Y; Zhang S; Lindahl E; Friedman R; Wu W; Su P
    J Chem Phys; 2022 Jul; 157(3):034104. PubMed ID: 35868936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding intermolecular interactions of large systems in ground state and excited state by using density functional based tight binding methods.
    Xu Y; Friedman R; Wu W; Su P
    J Chem Phys; 2021 May; 154(19):194106. PubMed ID: 34240911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions.
    Choi TH; Liang R; Maupin CM; Voth GA
    J Phys Chem B; 2013 May; 117(17):5165-79. PubMed ID: 23566052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy Decomposition Analysis Based on Absolutely Localized Molecular Orbitals for Large-Scale Density Functional Theory Calculations in Drug Design.
    Phipps MJ; Fox T; Tautermann CS; Skylaris CK
    J Chem Theory Comput; 2016 Jul; 12(7):3135-48. PubMed ID: 27248370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of GFN1-xTB for periodic optimization of metal organic frameworks.
    Nurhuda M; Perry CC; Addicoat MA
    Phys Chem Chem Phys; 2022 May; 24(18):10906-10914. PubMed ID: 35451436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Description of non-covalent interactions in SCC-DFTB methods.
    Miriyala VM; Řezáč J
    J Comput Chem; 2017 Apr; 38(10):688-697. PubMed ID: 28093777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Description of phosphate hydrolysis reactions with the Self-Consistent-Charge Density-Functional-Tight-Binding (SCC-DFTB) theory. 1. Parameterization.
    Yang Y; Yu H; York D; Elstner M; Cui Q
    J Chem Theory Comput; 2008; 4(12):2067-2084. PubMed ID: 19352441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the SCC-DFTB method to neutral and protonated water clusters and bulk water.
    Goyal P; Elstner M; Cui Q
    J Phys Chem B; 2011 May; 115(20):6790-805. PubMed ID: 21526802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extension of the self-consistent-charge density-functional tight-binding method: third-order expansion of the density functional theory total energy and introduction of a modified effective coulomb interaction.
    Yang Y; Yu H; York D; Cui Q; Elstner M
    J Phys Chem A; 2007 Oct; 111(42):10861-73. PubMed ID: 17914769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiempirical Methods for Molecular Systems in Strong Magnetic Fields.
    Cheng CY; Wibowo-Teale AM
    J Chem Theory Comput; 2023 Sep; 19(18):6226-6241. PubMed ID: 37672773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density-based energy decomposition analysis for intermolecular interactions with variationally determined intermediate state energies.
    Wu Q; Ayers PW; Zhang Y
    J Chem Phys; 2009 Oct; 131(16):164112. PubMed ID: 19894932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmark Investigation of SCC-DFTB against Standard and Hybrid DFT to Model Electronic Properties in Two-Dimensional MOFs for Thermoelectric Applications.
    Mahmoudi Gahrouei M; Vlastos N; D'Souza R; Odogwu EC; de Sousa Oliveira L
    J Chem Theory Comput; 2024 May; 20(9):3976-3992. PubMed ID: 38708963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The treatment of solvation by a generalized Born model and a self-consistent charge-density functional theory-based tight-binding method.
    Xie L; Liu H
    J Comput Chem; 2002 Nov; 23(15):1404-15. PubMed ID: 12370943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a SCC-DFTB QM/MM approach to the investigation of the catalytic mechanism of fatty acid amide hydrolase.
    Capoferri L; Mor M; Sirirak J; Chudyk E; Mulholland AJ; Lodola A
    J Mol Model; 2011 Sep; 17(9):2375-83. PubMed ID: 21365225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bulk and Surface Properties of Rutile TiO2 from Self-Consistent-Charge Density Functional Tight Binding.
    Fox H; Newman KE; Schneider WF; Corcelli SA
    J Chem Theory Comput; 2010 Feb; 6(2):499-507. PubMed ID: 26617305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density-functional tight-binding: basic concepts and applications to molecules and clusters.
    Spiegelman F; Tarrat N; Cuny J; Dontot L; Posenitskiy E; Martí C; Simon A; Rapacioli M
    Adv Phys X; 2020; 5(1):1710252. PubMed ID: 33154977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling vibrational spectra using the self-consistent charge density-functional tight-binding method. I. Raman spectra.
    Witek HA; Morokuma K; Stradomska A
    J Chem Phys; 2004 Sep; 121(11):5171-8. PubMed ID: 15352809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metadynamics combined with auxiliary density functional and density functional tight-binding methods: alanine dipeptide as a case study.
    Cuny J; Korchagina K; Menakbi C; Mineva T
    J Mol Model; 2017 Mar; 23(3):72. PubMed ID: 28204939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling Charge Resonance in Cationic Molecular Clusters: Combining DFT-Tight Binding with Configuration Interaction.
    Rapacioli M; Spiegelman F; Scemama A; Mirtschink A
    J Chem Theory Comput; 2011 Jan; 7(1):44-55. PubMed ID: 26606217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.