These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35868938)

  • 1. Near-ambient pressure velocity map imaging.
    Chien TE; Hohmann L; Harding DJ
    J Chem Phys; 2022 Jul; 157(3):034201. PubMed ID: 35868938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The new ambient-pressure X-ray photoelectron spectroscopy instrument at MAX-lab.
    Schnadt J; Knudsen J; Andersen JN; Siegbahn H; Pietzsch A; Hennies F; Johansson N; Mårtensson N; Ohrwall G; Bahr S; Mähl S; Schaff O
    J Synchrotron Radiat; 2012 Sep; 19(Pt 5):701-4. PubMed ID: 22898948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early Microjet Experimentation with Liquid Water in Vacuum.
    Faubel M
    Acc Chem Res; 2023 Mar; 56(6):625-630. PubMed ID: 36719846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A near ambient pressure photoemission electron microscope (NAP-PEEM).
    Ning Y; Fu Q; Li Y; Zhao S; Wang C; Breitschaft M; Hagen S; Schaff O; Bao X
    Ultramicroscopy; 2019 May; 200():105-110. PubMed ID: 30851711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution threshold photoelectron study of the propargyl radical by the vacuum ultraviolet laser velocity-map imaging method.
    Gao H; Xu Y; Yang L; Lam CS; Wang H; Zhou J; Ng CY
    J Chem Phys; 2011 Dec; 135(22):224304. PubMed ID: 22168691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soft X-ray spectroscopy of nanoparticles by velocity map imaging.
    Kostko O; Xu B; Jacobs MI; Ahmed M
    J Chem Phys; 2017 Jul; 147(1):013931. PubMed ID: 28688419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Velocity-map imaging at low extraction fields.
    Horke DA; Roberts GM; Lecointre J; Verlet JR
    Rev Sci Instrum; 2012 Jun; 83(6):063101. PubMed ID: 22755609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion and velocity map imaging for surface dynamics and kinetics.
    Harding DJ; Neugebohren J; Hahn H; Auerbach DJ; Kitsopoulos TN; Wodtke AM
    J Chem Phys; 2017 Jul; 147(1):013939. PubMed ID: 28688411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A near-ambient pressure flow reactor coupled with polarization-modulation infrared reflection absorption spectroscopy for operando studies of heterogeneous catalytic reactions over model catalysts.
    Chai P; Jin Y; Sun G; Ding L; Wu L; Wang H; Fu C; Wu Z; Huang W
    Rev Sci Instrum; 2022 May; 93(5):054105. PubMed ID: 35649779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding Catalyst Surfaces during Catalysis through Near Ambient Pressure X-ray Photoelectron Spectroscopy.
    Nguyen L; Tao FF; Tang Y; Dou J; Bao XJ
    Chem Rev; 2019 Jun; 119(12):6822-6905. PubMed ID: 31181905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct and dramatic water dissociation on GaP(111) tracked by near-ambient pressure X-ray photoelectron spectroscopy.
    Zhang X; Ptasinska S
    Phys Chem Chem Phys; 2015 Feb; 17(5):3909-18. PubMed ID: 25559043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable deep ultraviolet laser based near ambient pressure photoemission electron microscope for surface imaging in the millibar regime.
    Ning Y; Li Y; Wang C; Li R; Zhang F; Zhang S; Wang Z; Yang F; Zong N; Peng Q; Xu Z; Wang X; Li R; Breitschaft M; Hagen S; Schaff O; Fu Q; Bao X
    Rev Sci Instrum; 2020 Nov; 91(11):113704. PubMed ID: 33261460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-situ observations of catalytic surface reactions with soft x-rays under working conditions.
    Toyoshima R; Kondoh H
    J Phys Condens Matter; 2015 Mar; 27(8):083003. PubMed ID: 25667354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel gas-vacuum interface for environmental molecular beam studies.
    Johansson SM; Kong X; Papagiannakopoulos P; Thomson ES; Pettersson JB
    Rev Sci Instrum; 2017 Mar; 88(3):035112. PubMed ID: 28372415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO oxidation activity of Pt, Zn and ZnPt nanocatalysts: a comparative study by in situ near-ambient pressure X-ray photoelectron spectroscopy.
    Naitabdi A; Boucly A; Rochet F; Fagiewicz R; Olivieri G; Bournel F; Benbalagh R; Sirotti F; Gallet JJ
    Nanoscale; 2018 Apr; 10(14):6566-6580. PubMed ID: 29577122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast soft X-ray photoelectron spectroscopy at liquid water microjets.
    Faubel M; Siefermann KR; Liu Y; Abel B
    Acc Chem Res; 2012 Jan; 45(1):120-30. PubMed ID: 22075058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The design of double electrostatic-lens optics for resonance enhanced multiphoton ionization and photoelectron imaging experiments.
    Qu Z; Li C; Qin Z; Zheng X; Yao G; Zhang X; Cui Z
    Rev Sci Instrum; 2015 Jun; 86(6):063106. PubMed ID: 26133827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-plate velocity-map imaging design for high-resolution photoelectron spectroscopy.
    Kregel SJ; Thurston GK; Zhou J; Garand E
    J Chem Phys; 2017 Sep; 147(9):094201. PubMed ID: 28886660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Velocity map imaging of the dynamics of bimolecular chemical reactions.
    Greaves SJ; Rose RA; Orr-Ewing AJ
    Phys Chem Chem Phys; 2010 Aug; 12(32):9129-43. PubMed ID: 20448868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cryogenic cylindrical ion trap velocity map imaging spectrometer.
    Hua Z; Feng S; Zhou Z; Liang H; Chen Y; Zhao D
    Rev Sci Instrum; 2019 Jan; 90(1):013101. PubMed ID: 30709209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.