These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35869415)

  • 81. Human sebaceous glands engage in aerobic glycolysis and glutaminolysis.
    Downie MM; Kealey T
    Br J Dermatol; 2004 Aug; 151(2):320-7. PubMed ID: 15327538
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Limits of aerobic metabolism in cancer cells.
    Fernandez-de-Cossio-Diaz J; Vazquez A
    Sci Rep; 2017 Oct; 7(1):13488. PubMed ID: 29044214
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Curbing Lipids: Impacts ON Cancer and Viral Infection.
    Dutta A; Sharma-Walia N
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30717356
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Viral Manipulation of the Host Metabolic Network.
    Mesquita I; Estaquier J
    Exp Suppl; 2018; 109():377-401. PubMed ID: 30535606
    [TBL] [Abstract][Full Text] [Related]  

  • 85. c-MYC Triggers Lipid Remodelling During Early Somatic Cell Reprogramming to Pluripotency.
    Prieto J; García-Cañaveras JC; León M; Sendra R; Ponsoda X; Izpisúa Belmonte JC; Lahoz A; Torres J
    Stem Cell Rev Rep; 2021 Dec; 17(6):2245-2261. PubMed ID: 34476741
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Glucose-dependent aerobic glycolysis contributes to recruiting viral components into HIV-1 particles to maintain infectivity.
    Kishimoto N; Yamamoto K; Abe T; Yasuoka N; Takamune N; Misumi S
    Biochem Biophys Res Commun; 2021 Apr; 549():187-193. PubMed ID: 33676187
    [TBL] [Abstract][Full Text] [Related]  

  • 87. The phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2)-dependent Tup1 conversion (PIPTC) regulates metabolic reprogramming from glycolysis to gluconeogenesis.
    Han BK; Emr SD
    J Biol Chem; 2013 Jul; 288(28):20633-45. PubMed ID: 23733183
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Targeting metabolic reprogramming in KRAS-driven cancers.
    Kawada K; Toda K; Sakai Y
    Int J Clin Oncol; 2017 Aug; 22(4):651-659. PubMed ID: 28647837
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The Pentose Phosphate Pathway in Cancer: Regulation and Therapeutic Opportunities.
    Ghanem N; El-Baba C; Araji K; El-Khoury R; Usta J; Darwiche N
    Chemotherapy; 2021; 66(5-6):179-191. PubMed ID: 34775382
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Proteomics analysis of high lipid-producing strain Mucor circinelloides WJ11: an explanation for the mechanism of lipid accumulation at the proteomic level.
    Tang X; Zan X; Zhao L; Chen H; Chen YQ; Chen W; Song Y; Ratledge C
    Microb Cell Fact; 2016 Feb; 15():35. PubMed ID: 26867592
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Quantitative Proteomics Charts the Landscape of Salmonella Carbon Metabolism within Host Epithelial Cells.
    Liu Y; Yu K; Zhou F; Ding T; Yang Y; Hu M; Liu X
    J Proteome Res; 2017 Feb; 16(2):788-797. PubMed ID: 28152601
    [TBL] [Abstract][Full Text] [Related]  

  • 92. HIF-1-Dependent Reprogramming of Glucose Metabolic Pathway of Cancer Cells and Its Therapeutic Significance.
    Nagao A; Kobayashi M; Koyasu S; Chow CCT; Harada H
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30634433
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The Entner-Doudoroff and Nonoxidative Pentose Phosphate Pathways Bypass Glycolysis and the Oxidative Pentose Phosphate Pathway in Ralstonia solanacearum.
    Jyoti P; Shree M; Joshi C; Prakash T; Ray SK; Satapathy SS; Masakapalli SK
    mSystems; 2020 Mar; 5(2):. PubMed ID: 32156794
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Ordering events of biochemical evolution.
    Cunchillos C; Lecointre G
    Biochimie; 2007 May; 89(5):555-73. PubMed ID: 17408843
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Post-Transcriptional and Post-translational Regulation of Central Carbon Metabolic Enzymes in Cancer.
    Wang Y; Chen Y; Fang J
    Anticancer Agents Med Chem; 2017 Nov; 17(11):1456-1465. PubMed ID: 28356004
    [TBL] [Abstract][Full Text] [Related]  

  • 96. MYC-induced reprogramming of glutamine catabolism supports optimal virus replication.
    Thai M; Thaker SK; Feng J; Du Y; Hu H; Ting Wu T; Graeber TG; Braas D; Christofk HR
    Nat Commun; 2015 Nov; 6():8873. PubMed ID: 26561297
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis.
    DeBerardinis RJ; Mancuso A; Daikhin E; Nissim I; Yudkoff M; Wehrli S; Thompson CB
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19345-50. PubMed ID: 18032601
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Metabolomics Exploration of Pseudorabies Virus Reprogramming Metabolic Profiles of PK-15 Cells to Enhance Viral Replication.
    Gou H; Bian Z; Li Y; Cai R; Jiang Z; Song S; Zhang K; Chu P; Yang D; Li C
    Front Cell Infect Microbiol; 2020; 10():599087. PubMed ID: 33585273
    [TBL] [Abstract][Full Text] [Related]  

  • 99. SLC1A3 facilitates Newcastle disease virus replication by regulating glutamine catabolism.
    Liu P; Tang N; Meng C; Yin Y; Qiu X; Tan L; Sun Y; Song C; Liu W; Liao Y; Lin SH; Ding C
    Virulence; 2022 Dec; 13(1):1407-1422. PubMed ID: 35993169
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Metabolomics analysis of metabolic effects of nicotinamide phosphoribosyltransferase (NAMPT) inhibition on human cancer cells.
    Tolstikov V; Nikolayev A; Dong S; Zhao G; Kuo MS
    PLoS One; 2014; 9(12):e114019. PubMed ID: 25486521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.