These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 35869750)

  • 1. Radiomics model based on features of axillary lymphatic nodes to predict axillary lymphatic node metastasis in breast cancer.
    Tang Y; Che X; Wang W; Su S; Nie Y; Yang C
    Med Phys; 2022 Dec; 49(12):7555-7566. PubMed ID: 35869750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An unsupervised learning model based on CT radiomics features accurately predicts axillary lymph node metastasis in breast cancer patients: diagnostic study.
    Qu L; Mei X; Yi Z; Zou Q; Zhou Q; Zhang D; Zhou M; Pei L; Long Q; Meng J; Zhang H; Chen Q; Yi W
    Int J Surg; 2024 Sep; 110(9):5363-5373. PubMed ID: 38847776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiomics in cone-beam breast CT for the prediction of axillary lymph node metastasis in breast cancer: a multi-center multi-device study.
    Zhu Y; Ma Y; Zhai Z; Liu A; Wang Y; Zhang Y; Li H; Zhao M; Han P; Yin L; He N; Wu Y; Sechopoulos I; Ye Z; Caballo M
    Eur Radiol; 2024 Apr; 34(4):2576-2589. PubMed ID: 37782338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis.
    Wang SR; Cao CL; Du TT; Wang JL; Li J; Li WX; Chen M
    J Ultrasound Med; 2024 Sep; 43(9):1611-1625. PubMed ID: 38808580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.
    Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H
    EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Traditional Radiomics, Deep Learning Radiomics and Fusion Methods for Axillary Lymph Node Metastasis Prediction in Breast Cancer.
    Li X; Yang L; Jiao X
    Acad Radiol; 2023 Jul; 30(7):1281-1287. PubMed ID: 36376154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-modality radiomics model predicts axillary lymph node metastasis of breast cancer using MRI and mammography.
    Wang Q; Lin Y; Ding C; Guan W; Zhang X; Jia J; Zhou W; Liu Z; Bai G
    Eur Radiol; 2024 Sep; 34(9):6121-6131. PubMed ID: 38337068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer.
    Yu Y; Tan Y; Xie C; Hu Q; Ouyang J; Chen Y; Gu Y; Li A; Lu N; He Z; Yang Y; Chen K; Ma J; Li C; Ma M; Li X; Zhang R; Zhong H; Ou Q; Zhang Y; He Y; Li G; Wu Z; Su F; Song E; Yao H
    JAMA Netw Open; 2020 Dec; 3(12):e2028086. PubMed ID: 33289845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of axillary lymph node metastasis using a magnetic resonance imaging radiomics model of invasive breast cancer primary tumor.
    Shi W; Su Y; Zhang R; Xia W; Lian Z; Mao N; Wang Y; Zhang A; Gao X; Zhang Y
    Cancer Imaging; 2024 Sep; 24(1):122. PubMed ID: 39272199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Metastasis in the Axillary Lymph Nodes of Patients With Breast Cancer: A Radiomics Method Based on Contrast-Enhanced Computed Tomography.
    Yang C; Dong J; Liu Z; Guo Q; Nie Y; Huang D; Qin N; Shu J
    Front Oncol; 2021; 11():726240. PubMed ID: 34616678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting axillary lymph node metastasis in breast cancer patients: A radiomics-based multicenter approach with interpretability analysis.
    Liu Z; Hong M; Li X; Lin L; Tan X; Liu Y
    Eur J Radiol; 2024 Jul; 176():111522. PubMed ID: 38805883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-invasive Assessment of Axillary Lymph Node Metastasis Risk in Early Invasive Breast Cancer Adopting Automated Breast Volume Scanning-Based Radiomics Nomogram: A Multicenter Study.
    Wang H; Yang XW; Chen F; Qin YY; Li XB; Ma SM; Lei JQ; Nan CL; Zhang WY; Chen W; Guo SL
    Ultrasound Med Biol; 2023 May; 49(5):1202-1211. PubMed ID: 36746744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiomic Nomogram for Predicting Axillary Lymph Node Metastasis in Patients with Breast Cancer.
    Chen Y; Li J; Zhang J; Yu Z; Jiang H
    Acad Radiol; 2024 Mar; 31(3):788-799. PubMed ID: 37932165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilizing multiclassifier radiomics analysis of ultrasound to predict high axillary lymph node tumour burden in node-positive breast cancer patients: a multicentre study.
    Wu J; Ge L; Guo Y; Xu D; Wang Z
    Ann Med; 2024 Dec; 56(1):2395061. PubMed ID: 39193658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-invasive prediction of axillary lymph node dissection exemption in breast cancer patients post-neoadjuvant therapy: A radiomics and deep learning analysis on longitudinal DCE-MRI data.
    Yu Y; Chen R; Yi J; Huang K; Yu X; Zhang J; Song C
    Breast; 2024 Oct; 77():103786. PubMed ID: 39137488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning Radiomics Nomogram Based on Multiphase Computed Tomography for Predicting Axillary Lymph Node Metastasis in Breast Cancer.
    Zhang J; Yin W; Yang L; Yao X
    Mol Imaging Biol; 2024 Feb; 26(1):90-100. PubMed ID: 37563517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cutting-edge deep learning-and-radiomics-based ultrasound nomogram for precise prediction of axillary lymph node metastasis in breast cancer patients ≥ 75 years.
    Qian L; Liu X; Zhou S; Zhi W; Zhang K; Li H; Li J; Chang C
    Front Endocrinol (Lausanne); 2024; 15():1323452. PubMed ID: 39072273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning Radiomics-Based Prediction of Non-sentinel Lymph Node Metastasis in Chinese Breast Cancer Patients with 1-2 Positive Sentinel Lymph Nodes: A Multicenter Study.
    Lin G; Chen W; Fan Y; Zhou Y; Li X; Hu X; Cheng X; Chen M; Kong C; Chen M; Xu M; Peng Z; Ji J
    Acad Radiol; 2024 Aug; 31(8):3081-3095. PubMed ID: 38490840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Based on Intratumoral and Peritumoral DCE-MRI Radiomics Nomogram.
    Liu Y; Li X; Zhu L; Zhao Z; Wang T; Zhang X; Cai B; Li L; Ma M; Ma X; Ming J
    Contrast Media Mol Imaging; 2022; 2022():6729473. PubMed ID: 36051932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A radiogenomic multimodal and whole-transcriptome sequencing for preoperative prediction of axillary lymph node metastasis and drug therapeutic response in breast cancer: a retrospective, machine learning and international multicohort study.
    Lai J; Chen Z; Liu J; Zhu C; Huang H; Yi Y; Cai G; Liao N
    Int J Surg; 2024 Apr; 110(4):2162-2177. PubMed ID: 38215256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.