These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35869823)

  • 1. Visualising and quantifying microvascular structure and function in patients with heart failure using optical coherence tomography.
    Sciarrone DFG; McLaughlin RA; Argarini R; To MS; Naylor LH; Bolam LM; Carter HH; Green DJ
    J Physiol; 2022 Sep; 600(17):3921-3929. PubMed ID: 35869823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing and quantifying the impact of reactive hyperemia on cutaneous microvessels in humans.
    Argarini R; Smith KJ; Carter HH; Naylor LH; McLaughlin RA; Green DJ
    J Appl Physiol (1985); 2020 Jan; 128(1):17-24. PubMed ID: 31725361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Noninvasive Assessment of Microvascular Structure and Function in Humans.
    Smith KJ; Argarini R; Carter HH; Quirk BC; Haynes A; Naylor LH; McKirdy H; Kirk RW; McLaughlin RA; Green DJ
    Med Sci Sports Exerc; 2019 Jul; 51(7):1558-1565. PubMed ID: 30688767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualizing and quantifying cutaneous microvascular reactivity in humans by use of optical coherence tomography: impaired dilator function in diabetes.
    Argarini R; McLaughlin RA; Joseph SZ; Naylor LH; Carter HH; Haynes A; Marsh CE; Yeap BB; Jansen SJ; Green DJ
    Am J Physiol Endocrinol Metab; 2020 Nov; 319(5):E923-E931. PubMed ID: 32954827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical coherence tomography: a novel imaging approach to visualize and quantify cutaneous microvascular structure and function in patients with diabetes.
    Argarini R; McLaughlin RA; Joseph SZ; Naylor LH; Carter HH; Yeap BB; Jansen SJ; Green DJ
    BMJ Open Diabetes Res Care; 2020 Aug; 8(1):. PubMed ID: 32847842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation to Exercise Training in Conduit Arteries and Cutaneous Microvessels in Humans: An Optical Coherence Tomography Study.
    Argarini R; Carter HH; Smith KJ; Naylor LH; McLaughlin RA; Green DJ
    Med Sci Sports Exerc; 2021 Sep; 53(9):1945-1957. PubMed ID: 33731650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical coherence tomography in the assessment of acute changes in cutaneous vascular diameter induced by heat stress.
    Carter HH; Gong P; Kirk RW; Es'haghian S; Atkinson CL; Sampson DD; Green DJ; McLaughlin RA
    J Appl Physiol (1985); 2016 Oct; 121(4):965-972. PubMed ID: 27586840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel image processing workflow for the in vivo quantification of skin microvasculature using dynamic optical coherence tomography.
    Zugaj D; Chenet A; Petit L; Vaglio J; Pascual T; Piketty C; Bourdes V
    Skin Res Technol; 2018 Aug; 24(3):396-406. PubMed ID: 29399881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of chronic radiation proctopathy and radiofrequency ablation treatment follow-up with optical coherence tomography angiography: A pilot study.
    Ahsen OO; Liang K; Lee HC; Wang Z; Fujimoto JG; Mashimo H
    World J Gastroenterol; 2019 Apr; 25(16):1997-2009. PubMed ID: 31086467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the human cutaneous microvasculature using optical coherence tomography: Proving Harvey's proof.
    Argarini R; McLaughlin RA; Naylor LH; Carter HH; Green DJ
    Microcirculation; 2020 Feb; 27(2):e12594. PubMed ID: 31585482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OCT-based angiography of human dermal microvascular reactions to local stimuli: Implications for increasing capillary blood collection volumes.
    Men S; Wong JM; Welch EJ; Xu J; Song S; Deegan AJ; Ravichander A; Casavant B; Berthier E; Wang RK
    Lasers Surg Med; 2018 Sep; 50(9):908-916. PubMed ID: 29799134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascular morphology in normal skin studied with dynamic optical coherence tomography.
    Lindsø Andersen P; Olsen J; Friis KBE; Themstrup L; Grandahl K; Mortensen OS; Jemec GBE
    Exp Dermatol; 2018 Sep; 27(9):966-972. PubMed ID: 29733465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the impact of aging and blood pressure on dermal microvasculature by reactive hyperemia optical coherence tomography angiography.
    Wang-Evers M; Casper MJ; Glahn J; Luo T; Doyle AE; Karasik D; Kim AC; Phothong W; Nathan NR; Heesakker T; Kositratna G; Manstein D
    Sci Rep; 2021 Jun; 11(1):13411. PubMed ID: 34183707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo microvascular imaging of cutaneous actinic keratosis, Bowen's disease and squamous cell carcinoma using dynamic optical coherence tomography.
    Themstrup L; Pellacani G; Welzel J; Holmes J; Jemec GBE; Ulrich M
    J Eur Acad Dermatol Venereol; 2017 Oct; 31(10):1655-1662. PubMed ID: 28502083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High speed, wide velocity dynamic range Doppler optical coherence tomography (Part V): Optimal utilization of multi-beam scanning for Doppler and speckle variance microvascular imaging.
    Chen C; Cheng KH; Jakubovic R; Jivraj J; Ramjist J; Deorajh R; Gao W; Barnes E; Chin L; Yang VX
    Opt Express; 2017 Apr; 25(7):7761-7777. PubMed ID: 28380895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An exploratory study of structural and microvascular changes in the skin following electrical shaving using optical coherence topography.
    Chaturvedi P; Kroon W; Zanelli G; Worsley PR
    Skin Res Technol; 2024 Jul; 30(7):e13830. PubMed ID: 38951871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microvascular imaging of the skin.
    Deegan AJ; Wang RK
    Phys Med Biol; 2019 Mar; 64(7):07TR01. PubMed ID: 30708364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High resolution imaging of acne lesion development and scarring in human facial skin using OCT-based microangiography.
    Baran U; Li Y; Choi WJ; Kalkan G; Wang RK
    Lasers Surg Med; 2015 Mar; 47(3):231-8. PubMed ID: 25740313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of psoriatic plaque in vivo with correlation mapping optical coherence tomography.
    Zafar H; Enfield J; O'Connell ML; Ramsay B; Lynch M; Leahy MJ
    Skin Res Technol; 2014 May; 20(2):141-6. PubMed ID: 23869903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic optical coherence tomography of histamine induced wheals.
    Olsen J; Birch-Johansen FH; Themstrup L; Holmes J; Jemec GBE
    Skin Res Technol; 2018 Nov; 24(4):592-598. PubMed ID: 29717513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.