These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35869823)

  • 21. MEMS-based handheld fourier domain Doppler optical coherence tomography for intraoperative microvascular anastomosis imaging.
    Huang Y; Furtmüller GJ; Tong D; Zhu S; Lee WP; Brandacher G; Kang JU
    PLoS One; 2014; 9(12):e114215. PubMed ID: 25474742
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography.
    Pires L; Demidov V; Vitkin IA; Bagnato V; Kurachi C; Wilson BC
    J Biomed Opt; 2016 Aug; 21(8):081210. PubMed ID: 27300502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential use of OCT-based microangiography in clinical dermatology.
    Baran U; Choi WJ; Wang RK
    Skin Res Technol; 2016 May; 22(2):238-246. PubMed ID: 26335451
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of cmOCT and continuous wavelet transform analysis to the assessment of skin microcirculation dynamics.
    Smirni S; MacDonald MP; Robertson CP; McNamara PM; O'Gorman S; Leahy MJ; Khan F
    J Biomed Opt; 2018 Jul; 23(7):1-13. PubMed ID: 29992798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical coherence tomography angiography of normal skin and inflammatory dermatologic conditions.
    Deegan AJ; Talebi-Liasi F; Song S; Li Y; Xu J; Men S; Shinohara MM; Flowers ME; Lee SJ; Wang RK
    Lasers Surg Med; 2018 Mar; 50(3):183-193. PubMed ID: 29356051
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retinal microvascular attenuation in mental cognitive impairment and Alzheimer's disease by optical coherence tomography angiography.
    Wu J; Zhang X; Azhati G; Li T; Xu G; Liu F
    Acta Ophthalmol; 2020 Sep; 98(6):e781-e787. PubMed ID: 32153141
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo assessment of human burn scars through automated quantification of vascularity using optical coherence tomography.
    Liew YM; McLaughlin RA; Gong P; Wood FM; Sampson DD
    J Biomed Opt; 2013 Jun; 18(6):061213. PubMed ID: 23174911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Volumetric Characterization of Microvasculature in Ex Vivo Human Brain Samples By Serial Sectioning Optical Coherence Tomography.
    Yang J; Chang S; Chen IA; Kura S; Rosen GA; Saltiel NA; Huber BR; Varadarajan D; Balbastre Y; Magnain C; Chen SC; Fischl B; McKee AC; Boas DA; Wang H
    IEEE Trans Biomed Eng; 2022 Dec; 69(12):3645-3656. PubMed ID: 35560084
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rationale and design of the optical coherence tomography observation of pulmonary ultra-structural changes in heart failure (OCTOPUS-CHF) study.
    Ortiz-Bautista C; Gutiérrez-Ibañes E; García-Cosío MD; Calviño-Santos R; Gómez-Bueno M; Mirabet-Pérez S; Gómez-Hospital JA; Lambert-Rodríguez JL; Garrido-Bravo IP; de la Fuente Galán L; Mombiela T; Martínez-Solano J; Martínez-Sellés M
    Int J Cardiol; 2020 Jan; 299():296-300. PubMed ID: 31278027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dimension-based quantification of aging-associated cerebral microvasculature determined by optical coherence tomography and two-photon microscopy.
    Yan F; Alhajeri ZA; Nyul-Toth A; Wang C; Zhang Q; Mercyshalinie ERS; Delfavero J; Ahire C; Mutembei BM; Tarantini S; Csiszar A; Tang Q
    J Biophotonics; 2024 Mar; 17(3):e202300409. PubMed ID: 38176434
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vascular and Microvascular Endothelial Function in Heart Failure With Preserved Ejection Fraction.
    Maréchaux S; Samson R; van Belle E; Breyne J; de Monte J; Dédrie C; Chebai N; Menet A; Banfi C; Bouabdallaoui N; Le Jemtel TH; Ennezat PV
    J Card Fail; 2016 Jan; 22(1):3-11. PubMed ID: 26386451
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical coherence tomography quantifying photo aging: skin microvasculature depth, epidermal thickness and UV exposure.
    Olsen J; Gaetti G; Grandahl K; Jemec GBE
    Arch Dermatol Res; 2022 Jul; 314(5):469-476. PubMed ID: 34109468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validation of Dynamic optical coherence tomography for non-invasive, in vivo microcirculation imaging of the skin.
    Themstrup L; Welzel J; Ciardo S; Kaestle R; Ulrich M; Holmes J; Whitehead R; Sattler EC; Kindermann N; Pellacani G; Jemec GB
    Microvasc Res; 2016 Sep; 107():97-105. PubMed ID: 27235002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of microvascular retinal changes in type I diabetic mice with optical coherence tomography angiography.
    Uehara H; Lesuma T; Stocking P; Jensen N; Kumar SR; Zhang MA; Choi S; Zhang X; Archer B; Carroll L; Ambati BK
    Exp Eye Res; 2019 Jan; 178():91-98. PubMed ID: 30268699
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microvascular contrast enhancement in optical coherence tomography using microbubbles.
    Assadi H; Demidov V; Karshafian R; Douplik A; Vitkin IA
    J Biomed Opt; 2016 Jul; 21(7):76014. PubMed ID: 27533242
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plexus-specific effect of flicker-light stimulation on the retinal microvasculature assessed with optical coherence tomography angiography.
    Kallab M; Hommer N; Tan B; Pfister M; Schlatter A; Werkmeister RM; Chua J; Schmidl D; Schmetterer L; Garhöfer G
    Am J Physiol Heart Circ Physiol; 2021 Jan; 320(1):H23-H28. PubMed ID: 33275537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of macular microvasculature features before and after vitrectomy in the idiopathic macular epiretinal membrane using a grading system: An optical coherence tomography angiography study.
    Mao J; Xu Z; Lao J; Chen Y; Xu X; Wu S; Zheng Z; Liu B; Shen L
    Acta Ophthalmol; 2021 Nov; 99(7):e1168-e1175. PubMed ID: 33423352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantifying Microvascular Structure in Healthy and Infarcted Rat Hearts Using Optical Coherence Tomography Angiography.
    Xie Z; Zeinstra N; Kirby MA; Le NM; Murry CE; Zheng Y; Wang RK
    IEEE Trans Med Imaging; 2024 Aug; 43(8):2878-2887. PubMed ID: 38568757
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative depth-resolved microcirculation imaging with optical coherence tomography angiography (Part Ι): Blood flow velocity imaging.
    Gao W
    Microcirculation; 2018 Aug; 25(6):e12375. PubMed ID: 28419622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo measurements of blood vessels' distribution in non-melanoma skin cancer by dynamic optical coherence tomography - a new quantitative measure?
    Sigsgaard V; Themstrup L; Theut Riis P; Olsen J; Jemec GB
    Skin Res Technol; 2018 Feb; 24(1):123-128. PubMed ID: 28771885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.