BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 35869906)

  • 1. Feedback-Error Learning for time-effective gait trajectory tracking in wearable exoskeletons.
    Figueiredo J; Fernandes PN; Moreno JC; Santos CP
    Anat Rec (Hoboken); 2023 Apr; 306(4):728-740. PubMed ID: 35869906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control.
    Koller JR; Remy CD; Ferris DP
    J Neuroeng Rehabil; 2018 May; 15(1):42. PubMed ID: 29801451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.
    Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K
    Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative ankle-exoskeleton control can reduce effort to recover balance after unexpected disturbances during walking.
    Bayón C; Keemink AQL; van Mierlo M; Rampeltshammer W; van der Kooij H; van Asseldonk EHF
    J Neuroeng Rehabil; 2022 Feb; 19(1):21. PubMed ID: 35172846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergent Component of Motion Planning and Adaptive Repetitive Control for Wearable Walking Exoskeletons.
    Huang P; Li Z; Zhou M; Kan Z
    IEEE Trans Cybern; 2024 Apr; 54(4):2244-2256. PubMed ID: 36455087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wearable Biofeedback Improves Human-Robot Compliance during Ankle-Foot Exoskeleton-Assisted Gait Training: A Pre-Post Controlled Study in Healthy Participants.
    Pinheiro C; Figueiredo J; Magalhães N; Santos CP
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33080845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint angle control by FES using a feedback error learning controller.
    Kurosawa K; Futami R; Watanabe T; Hoshimiya N
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):359-71. PubMed ID: 16200759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking the Effects on Human-Exoskeleton Interaction of Trajectory, Admittance and EMG-Triggered Exoskeleton Movement Control.
    Rodrigues-Carvalho C; Fernández-García M; Pinto-Fernández D; Sanz-Morere C; Barroso FO; Borromeo S; Rodríguez-Sánchez C; Moreno JC; Del-Ama AJ
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feedback Error Learning Controller for Functional Electrical Stimulation Assistance in a Hybrid Robotic System for Reaching Rehabilitation.
    Resquín F; Gonzalez-Vargas J; Ibáñez J; Brunetti F; Pons JL
    Eur J Transl Myol; 2016 Jun; 26(3):6164. PubMed ID: 27990245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A PID Controller Approach to Explain Human Ankle Biomechanics across Walking Speeds.
    Herve O; Martin A; Villarreal DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2420-2423. PubMed ID: 31946387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preliminary Virtual Constraint-Based Control Evaluation on a Pediatric Lower-Limb Exoskeleton.
    Goo AC; Laubscher CA; Wajda DA; Sawicki JT
    Bioengineering (Basel); 2024 Jun; 11(6):. PubMed ID: 38927826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton.
    del-Ama AJ; Gil-Agudo A; Pons JL; Moreno JC
    J Neuroeng Rehabil; 2014 Mar; 11():27. PubMed ID: 24594302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and validation of a pediatric gait assistance exoskeleton system with fast non-singular terminal sliding mode controller.
    Narayan J; Abbas M; Dwivedy SK
    Med Eng Phys; 2024 Jan; 123():104080. PubMed ID: 38365333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assisting walking balance using a bio-inspired exoskeleton controller.
    Afschrift M; van Asseldonk E; van Mierlo M; Bayon C; Keemink A; D'Hondt L; van der Kooij H; De Groote F
    J Neuroeng Rehabil; 2023 Jun; 20(1):82. PubMed ID: 37370175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of stride length on lower extremity joint kinetics at various gait speeds.
    McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F
    PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overground Walking With a Transparent Exoskeleton Shows Changes in Spatiotemporal Gait Parameters.
    Andrade RM; Sapienza S; Mohebbi A; Fabara EE; Bonato P
    IEEE J Transl Eng Health Med; 2024; 12():182-193. PubMed ID: 38088995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton.
    Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.