These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35870006)

  • 21. Imaging of hypoxia in mouse atherosclerotic plaques with (64)Cu-ATSM.
    Nie X; Randolph GJ; Elvington A; Bandara N; Zheleznyak A; Gropler RJ; Woodard PK; Lapi SE
    Nucl Med Biol; 2016 Sep; 43(9):534-542. PubMed ID: 27372286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles.
    Tong W; Hui H; Shang W; Zhang Y; Tian F; Ma Q; Yang X; Tian J; Chen Y
    Theranostics; 2021; 11(2):506-521. PubMed ID: 33391489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cannabinoid receptor type 2 (CB2) as one of the candidate genes in human carotid plaque imaging: Evaluation of the novel radiotracer [
    Meletta R; Slavik R; Mu L; Rancic Z; Borel N; Schibli R; Ametamey SM; Krämer SD; Müller Herde A
    Nucl Med Biol; 2017 Apr; 47():31-43. PubMed ID: 28104528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasound/Optical Dual-Modality Imaging for Evaluation of Vulnerable Atherosclerotic Plaques with Osteopontin Targeted Nanoparticles.
    Li S; Gou T; Wang Q; Chen M; Chen Z; Xu M; Wang Y; Han D; Cao R; Liu J; Liang P; Dai Z; Cao F
    Macromol Biosci; 2020 Feb; 20(2):e1900279. PubMed ID: 31885210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atherosclerotic plaque uptake of a novel integrin tracer ¹⁸F-Flotegatide in a mouse model of atherosclerosis.
    Su H; Gorodny N; Gomez LF; Gangadharmath UB; Mu F; Chen G; Walsh JC; Szardenings K; Berman DS; Kolb HC; Tamarappoo BK
    J Nucl Cardiol; 2014 Jun; 21(3):553-62. PubMed ID: 24627345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Folate receptor–targeted single-photon emission computed tomography/computed tomography to detect activated macrophages in atherosclerosis: can it distinguish vulnerable from stable atherosclerotic plaques?
    Winkel LC; Groen HC; van Thiel BS; Müller C; van der Steen AF; Wentzel JJ; de Jong M; Van der Heiden K
    Mol Imaging; 2014; 13():. PubMed ID: 24757762
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shear stress-induced atherosclerotic plaque composition in ApoE(-/-) mice is modulated by connexin37.
    Pfenniger A; Meens MJ; Pedrigi RM; Foglia B; Sutter E; Pelli G; Rochemont V; Petrova TV; Krams R; Kwak BR
    Atherosclerosis; 2015 Nov; 243(1):1-10. PubMed ID: 26342936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 99mTc-labelled anti-CD11b SPECT/CT imaging allows detection of plaque destabilization tightly linked to inflammation.
    Liu G; Hu Y; Xiao J; Li X; Li Y; Tan H; Zhao Y; Cheng D; Shi H
    Sci Rep; 2016 Feb; 6():20900. PubMed ID: 26877097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of diagnostic ultrasound with cRGD-microbubbles on simultaneous detection and treatment of atherosclerotic plaque in ApoE
    Guo S; Zhang S; Chen K; Chen X; Hu F
    Front Cardiovasc Med; 2022; 9():946557. PubMed ID: 35935617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Redox-Responsive Self-Assembled Nanoprobe for Photoacoustic Inflammation Imaging to Assess Atherosclerotic Plaque Vulnerability.
    Gao W; Li X; Liu Z; Fu W; Sun Y; Cao W; Tong L; Tang B
    Anal Chem; 2019 Jan; 91(1):1150-1156. PubMed ID: 30497260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NecroX-7 reduces necrotic core formation in atherosclerotic plaques of Apoe knockout mice.
    Grootaert MOJ; Schrijvers DM; Van Spaendonk H; Breynaert A; Hermans N; Van Hoof VO; Takahashi N; Vandenabeele P; Kim SH; De Meyer GRY; Martinet W
    Atherosclerosis; 2016 Sep; 252():166-174. PubMed ID: 27425215
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of atherosclerotic plaques in ApoE-deficient mice using (99m)Tc-duramycin.
    Liu Z; Larsen BT; Lerman LO; Gray BD; Barber C; Hedayat AF; Zhao M; Furenlid LR; Pak KY; Woolfenden JM
    Nucl Med Biol; 2016 Aug; 43(8):496-505. PubMed ID: 27236285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular imaging of matrix metalloproteinase expression in atherosclerotic plaques of mice deficient in apolipoprotein e or low-density-lipoprotein receptor.
    Ohshima S; Petrov A; Fujimoto S; Zhou J; Azure M; Edwards DS; Murohara T; Narula N; Tsimikas S; Narula J
    J Nucl Med; 2009 Apr; 50(4):612-7. PubMed ID: 19289429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 68Ga-DOTA-RGD peptide: biodistribution and binding into atherosclerotic plaques in mice.
    Johanna Haukkala ; Iina Laitinen ; Pauliina Luoto ; Peter Iveson ; Ian Wilson ; Hege Karlsen ; Alan Cuthbertson ; Jukka Laine ; Pia Leppänen ; Ylä-Herttula S; Knuuti J; Roivainen A
    Eur J Nucl Med Mol Imaging; 2009 Dec; 36(12):2058-67. PubMed ID: 19629477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetic Resonance Imaging of Atherosclerotic Plaque at Clinically Relevant Field Strengths (1T) by Targeting the Integrin α4β1.
    Woodside DG; Tanifum EA; Ghaghada KB; Biediger RJ; Caivano AR; Starosolski ZA; Khounlo S; Bhayana S; Abbasi S; Craft JW; Maxwell DS; Patel C; Stupin IV; Bakthavatsalam D; Market RV; Willerson JT; Dixon RAF; Vanderslice P; Annapragada AV
    Sci Rep; 2018 Feb; 8(1):3733. PubMed ID: 29487319
    [TBL] [Abstract][Full Text] [Related]  

  • 36. P2X7 receptor-specific radioligand
    Fu Z; Lin Q; Xu Z; Zhao Y; Cheng Y; Shi D; Fu W; Yang T; Shi H; Cheng D
    Eur J Nucl Med Mol Imaging; 2022 Jul; 49(8):2595-2604. PubMed ID: 35048153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Specific targeting of atherosclerotic plaques in ApoE(-/-) mice using a new Camelid sdAb binding the vulnerable plaque marker LOX-1.
    De Vos J; Mathijs I; Xavier C; Massa S; Wernery U; Bouwens L; Lahoutte T; Muyldermans S; Devoogdt N
    Mol Imaging Biol; 2014 Oct; 16(5):690-8. PubMed ID: 24687730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nrf2 in bone marrow-derived cells positively contributes to the advanced stage of atherosclerotic plaque formation.
    Harada N; Ito K; Hosoya T; Mimura J; Maruyama A; Noguchi N; Yagami K; Morito N; Takahashi S; Maher JM; Yamamoto M; Itoh K
    Free Radic Biol Med; 2012 Dec; 53(12):2256-62. PubMed ID: 23051009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo ultrasound molecular imaging of inflammatory thrombosis in arteries with cyclic Arg-Gly-Asp-modified microbubbles targeted to glycoprotein IIb/IIIa.
    Wu W; Wang Y; Shen S; Wu J; Guo S; Su L; Hou F; Wang Z; Liao Y; Bin J
    Invest Radiol; 2013 Nov; 48(11):803-12. PubMed ID: 23857134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Vivo Translation of the CIRPI System: Revealing Molecular Pathology of Rabbit Aortic Atherosclerotic Plaques.
    Zaman RT; Yousefi S; Chibana H; Ikeno F; Long SR; Gambhir SS; Chin FT; McConnell MV; Xing L; Yeung A
    J Nucl Med; 2019 Sep; 60(9):1308-1316. PubMed ID: 30737298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.