These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 35870203)

  • 1. CBLRR: a cauchy-based bounded constraint low-rank representation method to cluster single-cell RNA-seq data.
    Ding Q; Yang W; Luo M; Xu C; Xu Z; Pang F; Cai Y; Anashkina AA; Su X; Chen N; Jiang Q
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35870203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation.
    Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data.
    Gan Y; Chen Y; Xu G; Guo W; Zou G
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. jSRC: a flexible and accurate joint learning algorithm for clustering of single-cell RNA-sequencing data.
    Wu W; Liu Z; Ma X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33535230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. JLONMFSC: Clustering scRNA-seq data based on joint learning of non-negative matrix factorization and subspace clustering.
    Lan W; Liu M; Chen J; Ye J; Zheng R; Zhu X; Peng W
    Methods; 2024 Feb; 222():1-9. PubMed ID: 38128706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network-Based Structural Learning Nonnegative Matrix Factorization Algorithm for Clustering of scRNA-Seq Data.
    Wu W; Ma X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):566-575. PubMed ID: 35316190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Personalized Low-Rank Subspace Clustering Method Based on Locality and Similarity Constraints for scRNA-seq Data Analysis.
    Qiao TJ; Liu JX; Shang J; Yuan S; Zheng CH; Wang J
    IEEE J Biomed Health Inform; 2023 May; 27(5):2575-2584. PubMed ID: 37027680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization and Analysis of Single Cell RNA-Seq Data by Maximizing Correntropy Based Non-Negative Low Rank Representation.
    Jiao CN; Liu JX; Wang J; Shang J; Zheng CH
    IEEE J Biomed Health Inform; 2022 Apr; 26(4):1872-1882. PubMed ID: 34495855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scTPC: a novel semisupervised deep clustering model for scRNA-seq data.
    Qiu Y; Yang L; Jiang H; Zou Q
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38684178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.
    Gan Y; Huang X; Zou G; Zhou S; Guan J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network.
    Wang J; Xia J; Wang H; Su Y; Zheng CH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36631401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. scSSA: A clustering method for single cell RNA-seq data based on semi-supervised autoencoder.
    Zhao JP; Hou TS; Su Y; Zheng CH
    Methods; 2022 Dec; 208():66-74. PubMed ID: 36377123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scGCL: an imputation method for scRNA-seq data based on graph contrastive learning.
    Xiong Z; Luo J; Shi W; Liu Y; Xu Z; Wang B
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36825817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clustering Single-Cell RNA Sequence Data Using Information Maximized and Noise-Invariant Representations.
    Mondal AK; Joshi I; Singh P; Ap P
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):1983-1994. PubMed ID: 37015582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell data clustering based on sparse optimization and low-rank matrix factorization.
    Hu Y; Li B; Chen F; Qu K
    G3 (Bethesda); 2021 Jun; 11(6):. PubMed ID: 33787873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scBKAP: A Clustering Model for Single-Cell RNA-Seq Data Based on Bisecting K-Means.
    Wang X; Gao H; Qi R; Zheng R; Gao X; Yu B
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2007-2015. PubMed ID: 37015596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ccImpute: an accurate and scalable consensus clustering based algorithm to impute dropout events in the single-cell RNA-seq data.
    Malec M; Kurban H; Dalkilic M
    BMC Bioinformatics; 2022 Jul; 23(1):291. PubMed ID: 35869420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.