BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35870277)

  • 1. The progress on porous organic materials for chiral separation.
    Chen Y; Xia L; Li G
    J Chromatogr A; 2022 Aug; 1677():463341. PubMed ID: 35870277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Research progress on preparation and applications of covalent organic framework-based chromatographic stationary phases].
    Liu J; Wu F; Gan L; Jin LY; Lin ZA
    Se Pu; 2023 Oct; 41(10):843-852. PubMed ID: 37875407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent progress of chiral stationary phases for separation of enantiomers in gas chromatography.
    Xie SM; Yuan LM
    J Sep Sci; 2017 Jan; 40(1):124-137. PubMed ID: 27570052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent development trends for chiral stationary phases based on chitosan derivatives, cyclofructan derivatives and chiral porous materials in high performance liquid chromatography.
    Xie SM; Yuan LM
    J Sep Sci; 2019 Jan; 42(1):6-20. PubMed ID: 30152091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioseparations by Gas Chromatography Using Porous Organic Cages as Stationary Phase.
    Xie SM; Zhang JH; Yuan LM
    Methods Mol Biol; 2019; 1985():45-55. PubMed ID: 31069728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral metal-organic frameworks and their composites as stationary phases for liquid chromatography chiral separation: A minireview.
    Liu C; Quan K; Chen J; Shi X; Qiu H
    J Chromatogr A; 2023 Jul; 1700():464032. PubMed ID: 37148566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of homochiral metal-organic frameworks in enantioselective adsorption and chromatography separation.
    Li X; Chang C; Wang X; Bai Y; Liu H
    Electrophoresis; 2014 Oct; 35(19):2733-43. PubMed ID: 24658972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral porous organic frameworks and their application in enantioseparation.
    Zhang Y; Jin X; Ma X; Wang Y
    Anal Methods; 2021 Jan; 13(1):8-33. PubMed ID: 33245740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-organic frameworks in chiral separation of pharmaceuticals.
    Dhurjad P; Dhalaram CS; Ali N; Kumari N; Sonti R
    Chirality; 2022 Nov; 34(11):1419-1436. PubMed ID: 35924487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of Novel Chiral Stationary Phases Based on the Chiral Porous Organic Cage by Thiol-ene Click Chemistry for Enantioseparation in HPLC.
    Wang Y; Chen JK; Xiong LX; Wang BJ; Xie SM; Zhang JH; Yuan LM
    Anal Chem; 2022 Mar; 94(12):4961-4969. PubMed ID: 35306818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly selective separation of enantiomers using a chiral porous organic cage.
    Zhang JH; Xie SM; Wang BJ; He PG; Yuan LM
    J Chromatogr A; 2015 Dec; 1426():174-82. PubMed ID: 26632517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective Separation of Enantiomers Based on Novel Chiral Hierarchical Porous Metal-Organic Gels.
    Ma Y; Li A; Gao X; Huang F; Kuang X; Yang P; Yue J; Tang B
    Macromol Rapid Commun; 2019 Apr; 40(8):e1800862. PubMed ID: 30758102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and applications of cellulose-functionalized chiral stationary phases: A review.
    Wang X; Li H; Quan K; Zhao L; Qiu H; Li Z
    Talanta; 2021 Apr; 225():121987. PubMed ID: 33592735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Rigid Conjugated Groups: Toward Improving Enantioseparation Performances of Chiral Porous Organic Polymers.
    Tan H; Chen Q; Chen T; Liu H
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37156-37162. PubMed ID: 31533431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent progress in the development of chiral stationary phases for high-performance liquid chromatography.
    Zhang JH; Xie SM; Yuan LM
    J Sep Sci; 2022 Jan; 45(1):51-77. PubMed ID: 34729907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential and current limitations of superficially porous silica as a carrier for polysaccharide-based chiral selectors in separation of enantiomers in high-performance liquid chromatography.
    Pantsulaia S; Targamadze K; Khundadze N; Kharaishvili Q; Volonterio A; Chitty M; Farkas T; Chankvetadze B
    J Chromatogr A; 2020 Aug; 1625():461297. PubMed ID: 32709340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral stationary phases and applications in gas chromatography.
    Betzenbichler G; Huber L; Kräh S; Morkos MK; Siegle AF; Trapp O
    Chirality; 2022 May; 34(5):732-759. PubMed ID: 35315953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further proof to the utility of polysaccharide-based chiral selectors in combination with superficially porous silica particles as effective chiral stationary phases for separation of enantiomers in high-performance liquid chromatography.
    Kharaishvili Q; Jibuti G; Farkas T; Chankvetadze B
    J Chromatogr A; 2016 Oct; 1467():163-168. PubMed ID: 27567142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pore-size optimization on the performance of polysaccharide-based superficially porous chiral stationary phases for the separation of enantiomers in high-performance liquid chromatography.
    Bezhitashvili L; Bardavelidze A; Ordjonikidze T; Chankvetadze L; Chity M; Farkas T; Chankvetadze B
    J Chromatogr A; 2017 Jan; 1482():32-38. PubMed ID: 28049582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of small size fully porous particles and superficially porous particles of chiral anion-exchange type stationary phases in ultra-high performance liquid chromatography: effect of particle and pore size on chromatographic efficiency and kinetic performance.
    Schmitt K; Woiwode U; Kohout M; Zhang T; Lindner W; Lämmerhofer M
    J Chromatogr A; 2018 Sep; 1569():149-159. PubMed ID: 30041874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.