These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 35870304)

  • 21. A co-evolutionary lane-changing trajectory planning method for automated vehicles based on the instantaneous risk identification.
    Wu J; Chen X; Bie Y; Zhou W
    Accid Anal Prev; 2023 Feb; 180():106907. PubMed ID: 36455450
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterizing car-following behaviors of human drivers when following automated vehicles using the real-world dataset.
    Wen X; Cui Z; Jian S
    Accid Anal Prev; 2022 Jul; 172():106689. PubMed ID: 35569279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In-vehicle displays to support driver anticipation of traffic conflicts in automated vehicles.
    He D; Kanaan D; Donmez B
    Accid Anal Prev; 2021 Jan; 149():105842. PubMed ID: 33157393
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Velocity control in car-following behavior with autonomous vehicles using reinforcement learning.
    Wang Z; Huang H; Tang J; Meng X; Hu L
    Accid Anal Prev; 2022 Sep; 174():106729. PubMed ID: 35700685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Computational Cognitive Model of Driver Response Time for Scheduled Freeway Exiting Takeovers in Conditionally Automated Vehicles.
    Tan X; Zhang Y
    Hum Factors; 2024 May; 66(5):1583-1599. PubMed ID: 36473708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of gender, occupation and experience on behavior while driving on a freeway deceleration lane based on field operational test data.
    Lyu N; Cao Y; Wu C; Xu J; Xie L
    Accid Anal Prev; 2018 Dec; 121():82-93. PubMed ID: 30237046
    [TBL] [Abstract][Full Text] [Related]  

  • 27. What driving style makes pedestrians think a passing vehicle is driving automatically?
    Bazilinskyy P; Sakuma T; de Winter J
    Appl Ergon; 2021 Sep; 95():103428. PubMed ID: 34020096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Available sight distance on existing highways: Meeting stopping sight distance requirements of an aging population.
    Gargoum SA; Tawfeek MH; El-Basyouny K; Koch JC
    Accid Anal Prev; 2018 Mar; 112():56-68. PubMed ID: 29316487
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated vehicles that communicate implicitly: examining the use of lateral position within the lane.
    Sripada A; Bazilinskyy P; de Winter J
    Ergonomics; 2021 Nov; 64(11):1416-1428. PubMed ID: 33950791
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A driving simulation study to examine the impact of available sight distance on driver behavior along rural highways.
    Bassani M; Catani L; Salussolia A; Yang CYD
    Accid Anal Prev; 2019 Oct; 131():200-212. PubMed ID: 31306834
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Projecting the planned trajectory of a Level-2 automated vehicle in the windshield: Effects on human drivers' take-over response to silent failures.
    Jung KH; Labriola JT; Baek H
    Appl Ergon; 2023 Sep; 111():104047. PubMed ID: 37207522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of takeover request lead time on drivers' situation awareness for manually exiting from freeways: A web-based study on level 3 automated vehicles.
    Tan X; Zhang Y
    Accid Anal Prev; 2022 Apr; 168():106593. PubMed ID: 35180465
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Longitudinal traffic conflict analysis of autonomous and traditional vehicle platoons in field tests via surrogate safety measures.
    Das T; Shoaib Samandar M; Rouphail N
    Accid Anal Prev; 2022 Nov; 177():106822. PubMed ID: 36103759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Standard freeway merge designs support safer driver behaviour compared to taper designs: a driving simulator study.
    Awan HH; Pirdavani A; Adnan M; Yasar AU; Wets G; Brijs T
    Ergonomics; 2020 Apr; 63(4):407-420. PubMed ID: 31994986
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Types and characteristics of ramp-related motor vehicle crashes on urban interstate roadways in Northern Virginia.
    McCartt AT; Northrup VS; Retting RA
    J Safety Res; 2004; 35(1):107-14. PubMed ID: 14992851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pedestrian Trust in Automated Vehicles: Role of Traffic Signal and AV Driving Behavior.
    Jayaraman SK; Creech C; Tilbury DM; Yang XJ; Pradhan AK; Tsui KM; Robert LP
    Front Robot AI; 2019; 6():117. PubMed ID: 33501132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Critical voxel learning with vision transformer and derivation of logical AV safety assessment scenarios.
    Kang M; Seo J; Hwang K; Yoon Y
    Accid Anal Prev; 2024 Feb; 195():107422. PubMed ID: 38064940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. What humanlike errors do autonomous vehicles need to avoid to maximize safety?
    Mueller AS; Cicchino JB; Zuby DS
    J Safety Res; 2020 Dec; 75():310-318. PubMed ID: 33334489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A freeway vehicle early warning method based on risk map: Enhancing traffic safety through global perspective characterization of driving risk.
    Cui C; An B; Li L; Qu X; Manda H; Ran B
    Accid Anal Prev; 2024 Aug; 203():107611. PubMed ID: 38733809
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated Lane Centering: An Off-the-Shelf Computer Vision Product vs. Infrastructure-Based Chip-Enabled Raised Pavement Markers.
    Kadav P; Sharma S; Fanas Rojas J; Patil P; Wang CR; Ekti AR; Meyer RT; Asher ZD
    Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.