These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35870304)

  • 41. Developing dynamic speed limit strategies for mixed traffic flow to reduce collision risks at freeway bottlenecks.
    Li Y; Pan B; Xing L; Yang M; Dai J
    Accid Anal Prev; 2022 Sep; 175():106781. PubMed ID: 35926373
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fatal crash between a car operating with automated control systems and a tractor-semitrailer truck.
    Poland K; McKay MP; Bruce D; Becic E
    Traffic Inj Prev; 2018; 19(sup2):S153-S156. PubMed ID: 30841795
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Safety and operational impact of connected vehicles' lane configuration on freeway facilities with managed lanes.
    Abdel-Aty M; Wu Y; Saad M; Rahman MS
    Accid Anal Prev; 2020 Sep; 144():105616. PubMed ID: 32516578
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficiency performance and safety evaluation of the responsibility-sensitive safety in freeway car-following scenarios using automated longitudinal controls.
    Hassanin O; Wang X; Wu X; Xu X
    Accid Anal Prev; 2022 Nov; 177():106799. PubMed ID: 36081222
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of a Framework for Generating Driving Safety Assessment Scenarios for Automated Vehicles.
    Ko W; Park S; Yun J; Park S; Yun I
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015798
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analyzing the ability of crash-prone highways to handle stochastically modelled driver demand for stopping sight distance.
    Gargoum SA; El-Basyouny K
    Accid Anal Prev; 2020 Mar; 136():105395. PubMed ID: 31877448
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Is vehicle automation enough to prevent crashes? Role of traffic operations in automated driving environments for traffic safety.
    Jeong E; Oh C; Lee S
    Accid Anal Prev; 2017 Jul; 104():115-124. PubMed ID: 28499140
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of motor control requirements on drivers' eye-gaze pattern during automated driving.
    Goncalves RC; Louw TL; Quaresma M; Madigan R; Merat N
    Accid Anal Prev; 2020 Dec; 148():105788. PubMed ID: 33039820
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exploratory analysis of automated vehicle crashes in California: A text analytics & hierarchical Bayesian heterogeneity-based approach.
    Boggs AM; Wali B; Khattak AJ
    Accid Anal Prev; 2020 Feb; 135():105354. PubMed ID: 31790970
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The perils of perfect performance; considering the effects of introducing autonomous vehicles on rates of car vs cyclist conflict.
    Thompson J; Read GJM; Wijnands JS; Salmon PM
    Ergonomics; 2020 Aug; 63(8):981-996. PubMed ID: 32138601
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Speed behaviour upon approaching freeway curves.
    Vos J; Farah H; Hagenzieker M
    Accid Anal Prev; 2021 Sep; 159():106276. PubMed ID: 34242863
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Human-Like Lane Change Decision Model for Autonomous Vehicles that Considers the Risk Perception of Drivers in Mixed Traffic.
    Wang C; Sun Q; Li Z; Zhang H
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316210
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Safety evaluation method in multi-logical scenarios for automated vehicles based on naturalistic driving trajectory.
    Zhang P; Zhu B; Zhao J; Fan T; Sun Y
    Accid Anal Prev; 2023 Feb; 180():106926. PubMed ID: 36543079
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automated Vehicles for People With Dementia: A "Tremendous Potential" That "Has Ways to go"-Reports of a Qualitative Study.
    Haghzare S; Stasiulis E; Delfi G; Mohamud H; Rapoport MJ; Naglie G; Mihailidis A; Campos JL
    Gerontologist; 2023 Jan; 63(1):140-154. PubMed ID: 35926470
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detecting lane change maneuvers using SHRP2 naturalistic driving data: A comparative study machine learning techniques.
    Das A; Khan MN; Ahmed MM
    Accid Anal Prev; 2020 Jul; 142():105578. PubMed ID: 32408143
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effective cues for accelerating young drivers' time to transfer control following a period of conditional automation.
    Wright TJ; Agrawal R; Samuel S; Wang Y; Zilberstein S; Fisher DL
    Accid Anal Prev; 2018 Jul; 116():14-20. PubMed ID: 29031513
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Short-term prediction of safety and operation impacts of lane changes in oscillations with empirical vehicle trajectories.
    Li M; Li Z; Xu C; Liu T
    Accid Anal Prev; 2020 Feb; 135():105345. PubMed ID: 31751785
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Research on Vehicle Trajectory Deviation Characteristics on Freeways Using Natural Driving Trajectory Data.
    Dai Z; Pan C; Xiong W; Ding R; Zhang H; Xu J
    Int J Environ Res Public Health; 2022 Nov; 19(22):. PubMed ID: 36429411
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Utilizing UAV video data for in-depth analysis of drivers' crash risk at interchange merging areas.
    Gu X; Abdel-Aty M; Xiang Q; Cai Q; Yuan J
    Accid Anal Prev; 2019 Feb; 123():159-169. PubMed ID: 30513457
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multi-agent traffic simulations to estimate the impact of automated technologies on safety.
    Kitajima S; Shimono K; Tajima J; Antona-Makoshi J; Uchida N
    Traffic Inj Prev; 2019; 20(sup1):S58-S64. PubMed ID: 31381431
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.