These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35870388)

  • 21. Changes of DOM and its correlation with internal nutrient release during cyanobacterial growth and decline in Lake Chaohu, China.
    Bao Y; Huang T; Ning C; Sun T; Tao P; Wang J; Sun Q
    J Environ Sci (China); 2023 Feb; 124():769-781. PubMed ID: 36182182
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene expression pattern of microbes associated with large cyanobacterial colonies for a whole year in Lake Taihu.
    Shi L; Cai Y; Gao S; Zhang M; Chen F; Shi X; Yu Y; Lu Y; Wu QL
    Water Res; 2022 Sep; 223():118958. PubMed ID: 35994786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism of cyanobacterial bloom control by magnetic lanthanum-based material.
    Song Q; Huang S; Yang S; Zhu H; Luo X; Zheng Z
    Sci Total Environ; 2023 Feb; 861():160603. PubMed ID: 36464049
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions between Phosphorus Enrichment and Nitrification Accelerate Relative Nitrogen Deficiency during Cyanobacterial Blooms in a Large Shallow Eutrophic Lake.
    Zhou Z; Liu Y; Wang S; Xiao J; Cao X; Zhou Y; Song C
    Environ Sci Technol; 2023 Feb; 57(7):2992-3001. PubMed ID: 36753734
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nutrient reduction mitigated the expansion of cyanobacterial blooms caused by climate change in Lake Taihu according to Bayesian network models.
    Deng J; Shan K; Shi K; Qian SS; Zhang Y; Qin B; Zhu G
    Water Res; 2023 Jun; 236():119946. PubMed ID: 37084577
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rising atmospheric CO
    Wang P; Ma J; Wang X; Tan Q
    Water Res; 2020 Oct; 185():116267. PubMed ID: 32798892
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China.
    Xu H; Paerl HW; Qin B; Zhu G; Hall NS; Wu Y
    Environ Sci Technol; 2015 Jan; 49(2):1051-9. PubMed ID: 25495555
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Response of the photosynthetic activity and biomass of the phytoplankton community to increasing nutrients during cyanobacterial blooms in Meiliang Bay, Lake Taihu.
    Wu P; Lu Y; Lu Y; Dai J; Huang T
    Water Environ Res; 2020 Jan; 92(1):138-148. PubMed ID: 31486194
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nutrients regeneration pathway, release potential, transformation pattern and algal utilization strategies jointly drove cyanobacterial growth and their succession.
    Li H; Song C; Yang L; Qin H; Cao X; Zhou Y
    J Environ Sci (China); 2021 May; 103():255-267. PubMed ID: 33743907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding the long-term trend of particulate phosphorus in a cyanobacteria-dominated lake using MODIS-Aqua observations.
    Shi K; Zhang Y; Zhang Y; Qin B; Zhu G
    Sci Total Environ; 2020 Oct; 737():139736. PubMed ID: 32512302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Response of Magnetite/Lanthanum hydroxide composite on cyanobacterial bloom.
    Song Q; Huang S; Xu L; Li Q; Luo X; Zheng Z
    Chemosphere; 2021 Jul; 275():130017. PubMed ID: 33652276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How rising CO
    Visser PM; Verspagen JMH; Sandrini G; Stal LJ; Matthijs HCP; Davis TW; Paerl HW; Huisman J
    Harmful Algae; 2016 Apr; 54():145-159. PubMed ID: 28073473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous removal of cyanobacterial blooms and production of clean water by coupling flocculation with a rotary drum filter.
    Wang C; Cai Q; Li Y; Tian C; Wu X; Huang Y; Xiao B
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):42082-42092. PubMed ID: 33792846
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cyanobacterial bloom phenology in Saginaw Bay from MODIS and a comparative look with western Lake Erie.
    Wynne TT; Stumpf RP; Litaker RW; Hood RR
    Harmful Algae; 2021 Mar; 103():101999. PubMed ID: 33980439
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New insights into cyanobacterial blooms and the response of associated microbial communities in freshwater ecosystems.
    Du C; Li G; Xia R; Li C; Zhu Q; Li X; Li J; Zhao C; Tian Z; Zhang L
    Environ Pollut; 2022 Sep; 309():119781. PubMed ID: 35841988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multivariable integrated risk assessment for cyanobacterial blooms in eutrophic lakes and its spatiotemporal characteristics.
    Wang S; Zhang X; Wang C; Chen N
    Water Res; 2023 Jan; 228(Pt A):119367. PubMed ID: 36417795
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metatranscriptomics analysis of cyanobacterial aggregates during cyanobacterial bloom period in Lake Taihu, China.
    Chen Z; Zhang J; Li R; Tian F; Shen Y; Xie X; Ge Q; Lu Z
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4811-4825. PubMed ID: 29198031
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Spatial distribution pattern and stock estimation of nutrients during bloom season in Lake Taihu].
    Jin YW; Zhu GW; Xu H; Zhu MY
    Huan Jing Ke Xue; 2015 Mar; 36(3):936-45. PubMed ID: 25929061
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Revealing Cryptic Changes of Cyanobacterial Community Structure in Two Eutrophic Lakes Using eDNA Sequencing.
    Jiang Y; Xiao P; Yu G; Song G; Li R
    Int J Environ Res Public Health; 2020 Sep; 17(17):. PubMed ID: 32882819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatiotemporal differences in phosphorus release potential of bloom-forming cyanobacteria in Lake Taihu.
    Wang M; Zhang H; Du C; Zhang W; Shen J; Yang S; Yang L
    Environ Pollut; 2021 Feb; 271():116294. PubMed ID: 33412452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.