These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 3587049)

  • 21. Analysis of the microtubule-binding domain of MAP-2.
    Gottlieb RA; Murphy DB
    J Cell Biol; 1985 Nov; 101(5 Pt 1):1782-9. PubMed ID: 4055896
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ca2+, calmodulin-dependent regulation of microtubule formation via phosphorylation of microtubule-associated protein 2, tau factor, and tubulin, and comparison with the cyclic AMP-dependent phosphorylation.
    Yamamoto H; Fukunaga K; Goto S; Tanaka E; Miyamoto E
    J Neurochem; 1985 Mar; 44(3):759-68. PubMed ID: 3919151
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DMAP-85: a tau-like protein from Drosophila melanogaster larvae.
    Cambiazo V; González M; Maccioni RB
    J Neurochem; 1995 Mar; 64(3):1288-97. PubMed ID: 7861162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural basis for the association of MAP6 protein with microtubules and its regulation by calmodulin.
    Lefèvre J; Savarin P; Gans P; Hamon L; Clément MJ; David MO; Bosc C; Andrieux A; Curmi PA
    J Biol Chem; 2013 Aug; 288(34):24910-22. PubMed ID: 23831686
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cloning, expression, and properties of the microtubule-stabilizing protein STOP.
    Bosc C; Cronk JD; Pirollet F; Watterson DM; Haiech J; Job D; Margolis RL
    Proc Natl Acad Sci U S A; 1996 Mar; 93(5):2125-30. PubMed ID: 8700896
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Elongation factor-1alpha stabilizes microtubules in a calcium/calmodulin-dependent manner.
    Moore RC; Durso NA; Cyr RJ
    Cell Motil Cytoskeleton; 1998; 41(2):168-80. PubMed ID: 9786091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. YB-1 promotes microtubule assembly in vitro through interaction with tubulin and microtubules.
    Chernov KG; Mechulam A; Popova NV; Pastre D; Nadezhdina ES; Skabkina OV; Shanina NA; Vasiliev VD; Tarrade A; Melki J; Joshi V; Baconnais S; Toma F; Ovchinnikov LP; Curmi PA
    BMC Biochem; 2008 Sep; 9():23. PubMed ID: 18793384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of chicken gizzard smooth muscle calponin with brain microtubules.
    Fujii T; Hiromori T; Hamamoto M; Suzuki T
    J Biochem; 1997 Aug; 122(2):344-51. PubMed ID: 9378712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Separation of active tubulin and microtubule-associated proteins by ultracentrifugation and isolation of a component causing the formation of microtubule bundles.
    Hamel E; Lin CM
    Biochemistry; 1984 Aug; 23(18):4173-84. PubMed ID: 6487596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purification and characterization of sheep brain cold-stable microtubules.
    Pirollet F; Job D; Fischer EH; Margolis RL
    Proc Natl Acad Sci U S A; 1983 Mar; 80(6):1560-4. PubMed ID: 6572919
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ca(2+)-calmodulin regulated effectors of microtubule stability in bovine brain.
    Pirollet F; Derancourt J; Haiech J; Job D; Margolis RL
    Biochemistry; 1992 Sep; 31(37):8849-55. PubMed ID: 1382581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A 60-kDa plant microtubule-associated protein promotes the growth and stabilization of neurotubules in vitro.
    Rutten T; Chan J; Lloyd CW
    Proc Natl Acad Sci U S A; 1997 Apr; 94(9):4469-74. PubMed ID: 9114013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein-protein interactions in microtubules as determined by reversible protein cross-linking.
    Sloboda RD; Gottwald D
    Ann N Y Acad Sci; 1986; 466():413-6. PubMed ID: 3460419
    [No Abstract]   [Full Text] [Related]  

  • 34. Effect of MAP 1, MAP 2, and tau-proteins on structural parameters of tubulin assemblies.
    Böhm KJ; Vater W; Steinmetzer P; Kusnetsov SA; Rodionov VI; Gelfand VI; Unger E
    Acta Histochem Suppl; 1990; 39():357-64. PubMed ID: 2127856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monoclonal antibody to microtubule-associated STOP protein: affinity purification of neuronal STOP activity and comparison of antigen with activity in neuronal and nonneuronal cell extracts.
    Pirollet F; Rauch CT; Job D; Margolis RL
    Biochemistry; 1989 Jan; 28(2):835-42. PubMed ID: 2713350
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sliding of STOP proteins on microtubules: a model system for diffusion-dependent microtubule motility.
    Margolis RL; Job D; Pabion M; Rauch CT
    Ann N Y Acad Sci; 1986; 466():306-21. PubMed ID: 3460415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstitution of physiological microtubule dynamics using purified components.
    Kinoshita K; Arnal I; Desai A; Drechsel DN; Hyman AA
    Science; 2001 Nov; 294(5545):1340-3. PubMed ID: 11701928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid disassembly of cold-stable microtubules by calmodulin.
    Job D; Fischer EH; Margolis RL
    Proc Natl Acad Sci U S A; 1981 Aug; 78(8):4679-82. PubMed ID: 6946418
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sliding of STOP proteins on microtubules.
    Pabion M; Job D; Margolis RL
    Biochemistry; 1984 Dec; 23(26):6642-8. PubMed ID: 6529574
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ca2+-and calmodulin-dependent flip-flop mechanism in microtubule assembly-disassembly.
    Kakiuchi S; Sobue K
    FEBS Lett; 1981 Sep; 132(1):141-3. PubMed ID: 6795060
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.