These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35870583)

  • 1. The future of tundra carbon storage in Greenland - Sensitivity to climate and plant trait changes.
    López-Blanco E; Langen PL; Williams M; Christensen JH; Boberg F; Langley K; Christensen TR
    Sci Total Environ; 2022 Nov; 846():157385. PubMed ID: 35870583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soil-plant N processes in a High Arctic ecosystem, NW Greenland are altered by long-term experimental warming and higher rainfall.
    Schaeffer SM; Sharp E; Schimel JP; Welker JM
    Glob Chang Biol; 2013 Nov; 19(11):3529-39. PubMed ID: 23843128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drivers of contemporary and future changes in Arctic seasonal transition dates for a tundra site in coastal Greenland.
    Liu Y; Wang P; Elberling B; Westergaard-Nielsen A
    Glob Chang Biol; 2024 Jan; 30(1):e17118. PubMed ID: 38273573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Larval outbreaks in West Greenland: Instant and subsequent effects on tundra ecosystem productivity and CO
    Lund M; Raundrup K; Westergaard-Nielsen A; López-Blanco E; Nymand J; Aastrup P
    Ambio; 2017 Feb; 46(Suppl 1):26-38. PubMed ID: 28116687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling carbon responses of tundra ecosystems to historical and projected climate: sensitivity of pan-Arctic carbon storage to temporal and spatial variation in climate.
    Mcguire AD; Clein JS; Melillo JM; Kicklighter DW; Meier RA; Vorosmarty CJ; Serreze MC
    Glob Chang Biol; 2000 Dec; 6(S1):141-159. PubMed ID: 35026941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Projections of water, carbon, and nitrogen dynamics under future climate change in an alpine tundra ecosystem in the southern Rocky Mountains using a biogeochemical model.
    Dong Z; Driscoll CT; Campbell JL; Pourmokhtarian A; Stoner AMK; Hayhoe K
    Sci Total Environ; 2019 Feb; 650(Pt 1):1451-1464. PubMed ID: 30308832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental drivers of increased ecosystem respiration in a warming tundra.
    Maes SL; Dietrich J; Midolo G; Schwieger S; Kummu M; Vandvik V; Aerts R; Althuizen IHJ; Biasi C; Björk RG; Böhner H; Carbognani M; Chiari G; Christiansen CT; Clemmensen KE; Cooper EJ; Cornelissen JHC; Elberling B; Faubert P; Fetcher N; Forte TGW; Gaudard J; Gavazov K; Guan Z; Guðmundsson J; Gya R; Hallin S; Hansen BB; Haugum SV; He JS; Hicks Pries C; Hovenden MJ; Jalava M; Jónsdóttir IS; Juhanson J; Jung JY; Kaarlejärvi E; Kwon MJ; Lamprecht RE; Le Moullec M; Lee H; Marushchak ME; Michelsen A; Munir TM; Myrsky EM; Nielsen CS; Nyberg M; Olofsson J; Óskarsson H; Parker TC; Pedersen EP; Petit Bon M; Petraglia A; Raundrup K; Ravn NMR; Rinnan R; Rodenhizer H; Ryde I; Schmidt NM; Schuur EAG; Sjögersten S; Stark S; Strack M; Tang J; Tolvanen A; Töpper JP; Väisänen MK; van Logtestijn RSP; Voigt C; Walz J; Weedon JT; Yang Y; Ylänne H; Björkman MP; Sarneel JM; Dorrepaal E
    Nature; 2024 May; 629(8010):105-113. PubMed ID: 38632407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resistance and change in a High Arctic ecosystem, NW Greenland: Differential sensitivity of ecosystem metrics to 15 years of experimental warming and wetting.
    Jespersen RG; Leffler AJ; Väisänen M; Welker JM
    Glob Chang Biol; 2022 Mar; 28(5):1853-1869. PubMed ID: 34870887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methane oxidation in contrasting soil types: responses to experimental warming with implication for landscape-integrated CH
    D'Imperio L; Nielsen CS; Westergaard-Nielsen A; Michelsen A; Elberling B
    Glob Chang Biol; 2017 Feb; 23(2):966-976. PubMed ID: 27416869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic.
    Treat CC; Marushchak ME; Voigt C; Zhang Y; Tan Z; Zhuang Q; Virtanen TA; Räsänen A; Biasi C; Hugelius G; Kaverin D; Miller PA; Stendel M; Romanovsky V; Rivkin F; Martikainen PJ; Shurpali NJ
    Glob Chang Biol; 2018 Nov; 24(11):5188-5204. PubMed ID: 30101501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the carbon balance of circumpolar Arctic tundra using remote sensing and process modeling.
    Sitch S; McGuire AD; Kimball J; Gedney N; Gamon J; Engstrom R; Wolf A; Zhuang Q; Clein J; McDonald KC
    Ecol Appl; 2007 Jan; 17(1):213-34. PubMed ID: 17479847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Winter precipitation and snow accumulation drive the methane sink or source strength of Arctic tussock tundra.
    Blanc-Betes E; Welker JM; Sturchio NC; Chanton JP; Gonzalez-Meler MA
    Glob Chang Biol; 2016 Aug; 22(8):2818-33. PubMed ID: 26851545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling long-term changes in tundra carbon balance following wildfire, climate change, and potential nutrient addition.
    Jiang Y; Rastetter EB; Shaver GR; Rocha AV; Zhuang Q; Kwiatkowski BL
    Ecol Appl; 2017 Jan; 27(1):105-117. PubMed ID: 27898193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil microbial responses to simulated climate change across polar ecosystems.
    Khan A; Ball BA
    Sci Total Environ; 2024 Jan; 909():168556. PubMed ID: 37979872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex carbon cycle responses to multi-level warming and supplemental summer rain in the high Arctic.
    Sharp ED; Sullivan PF; Steltzer H; Csank AZ; Welker JM
    Glob Chang Biol; 2013 Jun; 19(6):1780-92. PubMed ID: 23504924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing dynamic vegetation model parameter uncertainty across Alaskan arctic tundra plant communities.
    Euskirchen ES; Serbin SP; Carman TB; Fraterrigo JM; Genet H; Iversen CM; Salmon V; McGuire AD
    Ecol Appl; 2022 Mar; 32(2):e2499. PubMed ID: 34787932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling carbon responses of tundra ecosystems to historical and projected climate: a comparison of a plot- and a global-scale ecosystem model to identify process-based uncertainties.
    Clein JS; Kwiatkowski BL; McGuire AD; Hobbie JE; Rastetter EB; Melillo JM; Kicklighter DW
    Glob Chang Biol; 2000 Dec; 6(S1):127-140. PubMed ID: 35026931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change.
    Ernakovich JG; Hopping KA; Berdanier AB; Simpson RT; Kachergis EJ; Steltzer H; Wallenstein MD
    Glob Chang Biol; 2014 Oct; 20(10):3256-69. PubMed ID: 24599697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra.
    Christiansen CT; Haugwitz MS; Priemé A; Nielsen CS; Elberling B; Michelsen A; Grogan P; Blok D
    Glob Chang Biol; 2017 Jan; 23(1):406-420. PubMed ID: 27197084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative effects of climate change on upland grassland productivity and carbon fluxes are not attenuated by nitrogen status.
    Eze S; Palmer SM; Chapman PJ
    Sci Total Environ; 2018 Oct; 637-638():398-407. PubMed ID: 29753228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.