BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35870623)

  • 1. Evaluation of resistance to radial cyclic loads of poly(L-lactic acid) braided stents with different braiding angles.
    Liu Q; Liu M; Tian Y; Cheng J; Lang J; Zhang Y; Zhao G; Ni Z
    Int J Biol Macromol; 2022 Oct; 218():94-101. PubMed ID: 35870623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental investigation of the mechanical performance of PLLA wire-braided stents.
    Lucchetti A; Emonts C; Idrissi A; Gries T; Vaughan TJ
    J Mech Behav Biomed Mater; 2023 Feb; 138():105568. PubMed ID: 36459705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixed-braided stent: An effective way to improve comprehensive mechanical properties of poly (L-lactic acid) self-expandable braided stent.
    Liu M; Tian Y; Cheng J; Zhang Y; Zhao G; Ni Z
    J Mech Behav Biomed Mater; 2022 Apr; 128():105123. PubMed ID: 35183885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hazardous boundary of Poly(L-lactic acid) braided stent design: Limited elastic deformability of polymer materials.
    Li J; Cheng J; Hu X; Liu J; Tian Y; Wu G; Chen L; Zhang Y; Zhao G; Ni Z
    J Mech Behav Biomed Mater; 2023 Feb; 138():105628. PubMed ID: 36543082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical investigations of the mechanical properties of braided vascular stents.
    Fu W; Xia Q; Yan R; Qiao A
    Biomed Mater Eng; 2018; 29(1):81-94. PubMed ID: 29254075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-objective design optimization of bioresorbable braided stents.
    Carbonaro D; Lucchetti A; Audenino AL; Gries T; Vaughan TJ; Chiastra C
    Comput Methods Programs Biomed; 2023 Dec; 242():107781. PubMed ID: 37683458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulating mechanical performance of poly (l-lactide acid) stent by the combined effects of heat and aqueous media.
    Liu J; Wang B; Liu W; Hu X; Zhang C; Zhou Z; Lang J; Wu G; Zhang Y; Yang J; Ni Z; Zhao G
    Int J Biol Macromol; 2023 Jul; 242(Pt 4):124987. PubMed ID: 37236565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of parameters on mechanical properties of poly (L-lactic acid) helical stents.
    Zhao G; Liu J; Liu M; Tian Y; Cheng J; Liu W; Ni Z
    J Biomed Mater Res B Appl Biomater; 2022 Jul; 110(7):1705-1712. PubMed ID: 35157351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modified Theoretical Model Predicts Radial Support Capacity of Polymer Braided Stents.
    Hu X; Liu Q; Chen L; Cheng J; Liu M; Wu G; Sun R; Zhao G; Yang J; Ni Z
    Comput Methods Programs Biomed; 2024 Apr; 246():108063. PubMed ID: 38354577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An experimental evaluation of the mechanics of bare and polymer-covered self-expanding wire braided stents.
    McKenna CG; Vaughan TJ
    J Mech Behav Biomed Mater; 2020 Mar; 103():103549. PubMed ID: 31783281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastic recovery of polymeric braided stents under cyclic loading: Preliminary assessment.
    Jaziri H; Mokhtar S; Chakfe N; Heim F; Abdessalem SB
    J Mech Behav Biomed Mater; 2019 Oct; 98():131-136. PubMed ID: 31229905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility and implantation properties of 2 differently braided, biodegradable, self-reinforced polylactic acid urethral stents: an experimental study in the rabbit.
    Isotalo T; Nuutinen JP; Vaajanen A; Martikainen PM; Laurila M; Törmälä P; Talja M; Tammela TL
    J Urol; 2005 Dec; 174(6):2401-4. PubMed ID: 16280856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties and in vitro degradation of bioabsorbable self-expanding braided stents.
    Nuutinen JP; Clerc C; Reinikainen R; Törmälä P
    J Biomater Sci Polym Ed; 2003; 14(3):255-66. PubMed ID: 12713098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expansion and fixation properties of a new braided biodegradable urethral stent: an experimental study in the rabbit.
    Vaajanen A; Nuutinen JP; Isotalo T; Törmälä P; Tammela TL; Talja M
    J Urol; 2003 Mar; 169(3):1171-4. PubMed ID: 12576875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A resorbable bicomponent braided ureteral stent with improved mechanical performance.
    Zou T; Wang L; Li W; Wang W; Chen F; King MW
    J Mech Behav Biomed Mater; 2014 Oct; 38():17-25. PubMed ID: 24997428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of braided stents in curved vessels in terms of "Dogbone" deformation.
    Pan C; Zeng X; Han Y; Lu J
    Math Biosci Eng; 2022 Apr; 19(6):5717-5737. PubMed ID: 35603375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational analysis of the radial mechanical performance of PLLA coronary artery stents.
    Pauck RG; Reddy BD
    Med Eng Phys; 2015 Jan; 37(1):7-12. PubMed ID: 25456397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Key Factors of Mechanical Strength and Toughness in Oriented Poly(l-lactic acid) Monofilaments for a Bioresorbable Self-Expanding Stent.
    Wang B; Liu M; Liu J; Tian Y; Liu W; Wu G; Cheng J; Zhang Y; Zhao G; Ni Z
    Langmuir; 2022 Nov; 38(44):13477-13487. PubMed ID: 36306177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatibility properties of a new braided biodegradable urethral stent: a comparison with a biodegradable spiral and a braided metallic stent in the rabbit urethra.
    Isotalo TM; Nuutine JP; Vaajanen A; Martikainen PM; Laurila M; Törmälä P; Talja M; Tammela TL
    BJU Int; 2006 Apr; 97(4):856-9. PubMed ID: 16536787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Braided composite stent for peripheral vascular applications.
    Zheng Q; Dong P; Li Z; Lv Y; An M; Gu L
    Nanotechnol Rev; 2020 Jan; 9(1):1137-1146. PubMed ID: 35936942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.