These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35870625)

  • 1. Cellulose-based bio-adsorbent from TEMPO-oxidized natural loofah for effective removal of Pb(II) and methylene blue.
    Xiao WD; Xiao LP; Xiao WZ; Liu K; Zhang Y; Zhang HY; Sun RC
    Int J Biol Macromol; 2022 Oct; 218():285-294. PubMed ID: 35870625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microalgal-based macro-hollow loofah fiber bio-composite for methylene blue removal: A promising step for a green adsorbent.
    Moghazy RM; Mahmoud RH
    Int J Biol Macromol; 2023 Dec; 253(Pt 4):127009. PubMed ID: 37734521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization and mechanisms of methylene blue removal by foxtail millet shell from aqueous water and reuse in biosorption of Pb(II), Cd(II), Cu(II), and Zn(II) for secondary times.
    He P; Liu J; Ren ZR; Zhang Y; Gao Y; Chen ZQ; Liu X
    Int J Phytoremediation; 2022; 24(4):350-363. PubMed ID: 34410866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facilitative capture of As(V), Pb(II) and methylene blue from aqueous solutions with MgO hybrid sponge-like carbonaceous composite derived from sugarcane leafy trash.
    Li R; Liang W; Wang JJ; Gaston LA; Huang D; Huang H; Lei S; Awasthi MK; Zhou B; Xiao R; Zhang Z
    J Environ Manage; 2018 Apr; 212():77-87. PubMed ID: 29428656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microorganisms immobilized hydroxyethyl cellulose/luffa composite sponge for selective adsorption and biodegradation of oils in wastewater.
    Chen L; Lu H; Jiang X; Qu N; Hasi Q; Zhang Y; Zhang B; Jiang S
    Int J Biol Macromol; 2024 Oct; 277(Pt 1):133477. PubMed ID: 38942413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of MoS
    Zhou W; Deng J; Qin Z; Huang R; Wang Y; Tong S
    J Environ Sci (China); 2022 Jan; 111():38-50. PubMed ID: 34949366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-modified magnetic nanoparticles with Terminalia arjuna bark extract for the removal of methylene blue and lead (II) from simulated wastewater.
    Das C; Singh S; Bhakta S; Mishra P; Biswas G
    Chemosphere; 2022 Mar; 291(Pt 2):132673. PubMed ID: 34736943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of novel sandwich nanocomposite as an efficient and regenerable adsorbent for methylene blue and Pb (II) ion removal.
    Li Z; Tang X; Liu K; Huang J; Peng Q; Ao M; Huang Z
    J Environ Manage; 2018 Jul; 218():363-373. PubMed ID: 29704832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orange waste: A valuable carbohydrate source for the development of beads with enhanced adsorption properties for cationic dyes.
    Lessa EF; Gularte MS; Garcia ES; Fajardo AR
    Carbohydr Polym; 2017 Feb; 157():660-668. PubMed ID: 27987976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous removal of methylene blue and Pb
    Zhang X; Lu A; Li D; Shi L; Luo Z; Peng C
    Environ Technol; 2020 May; 41(13):1677-1690. PubMed ID: 30394195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Waste-to-Resource: New application of modified mine silicate waste to remove Pb
    Ghaedi S; Seifpanahi-Shabani K; Sillanpää M
    Chemosphere; 2022 Apr; 292():133412. PubMed ID: 34974049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Orange Peel Waste as Adsorbent for Methylene Blue and Cd
    Giraldo S; Acelas NY; Ocampo-Pérez R; Padilla-Ortega E; Flórez E; Franco CA; Cortés FB; Forgionny A
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sugarcane cellulose-based composite hydrogel enhanced by g-C
    Chen Z; Pan Y; Cai P
    Int J Biol Macromol; 2022 Apr; 205():37-48. PubMed ID: 35181325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dye adsorption behavior of Luffa cylindrica fibers.
    Demir H; Top A; Balköse D; Ulkü S
    J Hazard Mater; 2008 May; 153(1-2):389-94. PubMed ID: 17919814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH-Driven Selective Adsorption of Multi-Dyes Solutions by Loofah Sponge and Polyaniline-Modified Loofah Sponge.
    Galloni MG; Bortolotto V; Falletta E; Bianchi CL
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renewable adsorbents from the solid residue of sewage sludge hydrothermal liquefaction for wastewater treatment.
    Saner A; Carvalho PN; Catalano J; Anastasakis K
    Sci Total Environ; 2022 Sep; 838(Pt 3):156418. PubMed ID: 35660599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CTAB-modified carboxymethyl cellulose/bagasse cryogels for the efficient removal of bisphenol A, methylene blue and Cr(VI) ions: Batch and column adsorption studies.
    Meneses IP; Novaes SD; Dezotti RS; Oliveira PV; Petri DFS
    J Hazard Mater; 2022 Jan; 421():126804. PubMed ID: 34388928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent.
    Isobe N; Chen X; Kim UJ; Kimura S; Wada M; Saito T; Isogai A
    J Hazard Mater; 2013 Sep; 260():195-201. PubMed ID: 23747479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption and biodegradation removal of methylene blue in a down-flow hanging filter reactor incorporating natural adsorbent.
    Nguyet PN; Watari T; Hirakata Y; Hatamoto M; Yamaguchi T
    Environ Technol; 2021 Jan; 42(3):410-418. PubMed ID: 31179878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-temperature aerobic carbonization and activation of cellulosic materials for Pb
    Ai S; Qin Y; Hong Y; Liu L; Yu W
    Environ Pollut; 2022 Dec; 314():120215. PubMed ID: 36150617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.