These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 3587076)

  • 1. The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate.
    Tilles AW; Eckstein EC
    Microvasc Res; 1987 Mar; 33(2):211-23. PubMed ID: 3587076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near wall concentration profiles of 1.0 and 2.5 microns beads during flow of blood suspensions.
    Koleski JF; Eckstein EC
    ASAIO Trans; 1991; 37(1):9-12. PubMed ID: 2012720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditions for the occurrence of large near-wall excesses of small particles during blood flow.
    Eckstein EC; Tilles AW; Millero FJ
    Microvasc Res; 1988 Jul; 36(1):31-9. PubMed ID: 3185301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concentration profiles of 1 and 2.5 microns beads during blood flow. Hematocrit effects.
    Eckstein EC; Koleski JF; Waters CM
    ASAIO Trans; 1989; 35(3):188-90. PubMed ID: 2597441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentration profiles of platelet-sized latex beads for conditions relevant to hollow-fiber hemodialyzers.
    Waters CM; Eckstein EC
    Artif Organs; 1990 Feb; 14(1):7-13. PubMed ID: 2302078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient lateral transport of platelet-sized particles in flowing blood suspensions.
    Yeh C; Eckstein EC
    Biophys J; 1994 May; 66(5):1706-16. PubMed ID: 8061219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of platelets in flowing blood.
    Eckstein EC; Bilsker DL; Waters CM; Kippenhan JS; Tilles AW
    Ann N Y Acad Sci; 1987; 516():442-52. PubMed ID: 3439741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An estimated shape function for drift in a platelet-transport model.
    Yeh C; Calvez AC; Eckstein EC
    Biophys J; 1994 Sep; 67(3):1252-9. PubMed ID: 7811940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional platelet concentration in blood flow through capillary tubes.
    Corattiyl V; Eckstein EC
    Microvasc Res; 1986 Sep; 32(2):261-70. PubMed ID: 3762431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro measurement of particle margination in the microchannel flow: effect of varying hematocrit.
    Fitzgibbon S; Spann AP; Qi QM; Shaqfeh ESG
    Biophys J; 2015 May; 108(10):2601-2608. PubMed ID: 25992738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of margination of platelet-sized particles in red blood cell suspensions flowing through Y-shaped bifurcating microchannels.
    Sugihara-Seki M; Onozawa T; Takinouchi N; Itano T; Seki J
    Biorheology; 2020; 57(2-4):101-116. PubMed ID: 33523035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels.
    Alizadehrad D; Imai Y; Nakaaki K; Ishikawa T; Yamaguchi T
    J Biomech; 2012 Oct; 45(15):2684-9. PubMed ID: 22981440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood.
    Aarts PA; van den Broek SA; Prins GW; Kuiken GD; Sixma JJ; Heethaar RM
    Arteriosclerosis; 1988; 8(6):819-24. PubMed ID: 3196226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates.
    Cokelet GR; Goldsmith HL
    Circ Res; 1991 Jan; 68(1):1-17. PubMed ID: 1984854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of hematocrit on adenosine diphosphate-induced aggregation of human platelets in tube flow.
    Goldsmith HL; Kaufer ES; McIntosh FA
    Biorheology; 1995; 32(5):537-52. PubMed ID: 8541523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical and chemical effects of red cells in the shear-induced aggregation of human platelets.
    Goldsmith HL; Bell DN; Braovac S; Steinberg A; McIntosh F
    Biophys J; 1995 Oct; 69(4):1584-95. PubMed ID: 8534829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance microscopy determined velocity and hematocrit distributions in a Couette viscometer.
    Cokelet GR; Brown JR; Codd SL; Seymour JD
    Biorheology; 2005; 42(5):385-99. PubMed ID: 16308468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of erythrocyte aggregation on radial migration of platelet-sized spherical particles in shear flow.
    Guilbert C; Chayer B; Allard L; Yu FTH; Cloutier G
    J Biomech; 2017 Aug; 61():26-33. PubMed ID: 28720200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tube flow of human blood at near zero shear.
    Gaehtgens P
    Biorheology; 1987; 24(4):367-76. PubMed ID: 3663895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid mechanical stress and the platelet.
    Goldsmith HL; Yu SS; Marlow J
    Thromb Diath Haemorrh; 1975 Sep; 34(1):32-41. PubMed ID: 1188727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.