These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 3587076)
1. The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate. Tilles AW; Eckstein EC Microvasc Res; 1987 Mar; 33(2):211-23. PubMed ID: 3587076 [TBL] [Abstract][Full Text] [Related]
2. Near wall concentration profiles of 1.0 and 2.5 microns beads during flow of blood suspensions. Koleski JF; Eckstein EC ASAIO Trans; 1991; 37(1):9-12. PubMed ID: 2012720 [TBL] [Abstract][Full Text] [Related]
3. Conditions for the occurrence of large near-wall excesses of small particles during blood flow. Eckstein EC; Tilles AW; Millero FJ Microvasc Res; 1988 Jul; 36(1):31-9. PubMed ID: 3185301 [TBL] [Abstract][Full Text] [Related]
4. Concentration profiles of 1 and 2.5 microns beads during blood flow. Hematocrit effects. Eckstein EC; Koleski JF; Waters CM ASAIO Trans; 1989; 35(3):188-90. PubMed ID: 2597441 [TBL] [Abstract][Full Text] [Related]
5. Concentration profiles of platelet-sized latex beads for conditions relevant to hollow-fiber hemodialyzers. Waters CM; Eckstein EC Artif Organs; 1990 Feb; 14(1):7-13. PubMed ID: 2302078 [TBL] [Abstract][Full Text] [Related]
6. Transient lateral transport of platelet-sized particles in flowing blood suspensions. Yeh C; Eckstein EC Biophys J; 1994 May; 66(5):1706-16. PubMed ID: 8061219 [TBL] [Abstract][Full Text] [Related]
7. Transport of platelets in flowing blood. Eckstein EC; Bilsker DL; Waters CM; Kippenhan JS; Tilles AW Ann N Y Acad Sci; 1987; 516():442-52. PubMed ID: 3439741 [TBL] [Abstract][Full Text] [Related]
8. An estimated shape function for drift in a platelet-transport model. Yeh C; Calvez AC; Eckstein EC Biophys J; 1994 Sep; 67(3):1252-9. PubMed ID: 7811940 [TBL] [Abstract][Full Text] [Related]
10. In vitro measurement of particle margination in the microchannel flow: effect of varying hematocrit. Fitzgibbon S; Spann AP; Qi QM; Shaqfeh ESG Biophys J; 2015 May; 108(10):2601-2608. PubMed ID: 25992738 [TBL] [Abstract][Full Text] [Related]
11. Development of margination of platelet-sized particles in red blood cell suspensions flowing through Y-shaped bifurcating microchannels. Sugihara-Seki M; Onozawa T; Takinouchi N; Itano T; Seki J Biorheology; 2020; 57(2-4):101-116. PubMed ID: 33523035 [TBL] [Abstract][Full Text] [Related]
12. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels. Alizadehrad D; Imai Y; Nakaaki K; Ishikawa T; Yamaguchi T J Biomech; 2012 Oct; 45(15):2684-9. PubMed ID: 22981440 [TBL] [Abstract][Full Text] [Related]
13. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Aarts PA; van den Broek SA; Prins GW; Kuiken GD; Sixma JJ; Heethaar RM Arteriosclerosis; 1988; 8(6):819-24. PubMed ID: 3196226 [TBL] [Abstract][Full Text] [Related]
14. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates. Cokelet GR; Goldsmith HL Circ Res; 1991 Jan; 68(1):1-17. PubMed ID: 1984854 [TBL] [Abstract][Full Text] [Related]
15. Effect of hematocrit on adenosine diphosphate-induced aggregation of human platelets in tube flow. Goldsmith HL; Kaufer ES; McIntosh FA Biorheology; 1995; 32(5):537-52. PubMed ID: 8541523 [TBL] [Abstract][Full Text] [Related]
16. Physical and chemical effects of red cells in the shear-induced aggregation of human platelets. Goldsmith HL; Bell DN; Braovac S; Steinberg A; McIntosh F Biophys J; 1995 Oct; 69(4):1584-95. PubMed ID: 8534829 [TBL] [Abstract][Full Text] [Related]
17. Magnetic resonance microscopy determined velocity and hematocrit distributions in a Couette viscometer. Cokelet GR; Brown JR; Codd SL; Seymour JD Biorheology; 2005; 42(5):385-99. PubMed ID: 16308468 [TBL] [Abstract][Full Text] [Related]
18. Influence of erythrocyte aggregation on radial migration of platelet-sized spherical particles in shear flow. Guilbert C; Chayer B; Allard L; Yu FTH; Cloutier G J Biomech; 2017 Aug; 61():26-33. PubMed ID: 28720200 [TBL] [Abstract][Full Text] [Related]
19. Tube flow of human blood at near zero shear. Gaehtgens P Biorheology; 1987; 24(4):367-76. PubMed ID: 3663895 [TBL] [Abstract][Full Text] [Related]