These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 3587076)

  • 21. Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes.
    Gaehtgens P; Dührssen C; Albrecht KH
    Blood Cells; 1980; 6(4):799-817. PubMed ID: 7470632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Echocardiographic "smoke" is produced by an interaction of erythrocytes and plasma proteins modulated by shear forces.
    Merino A; Hauptman P; Badimon L; Badimon JJ; Cohen M; Fuster V; Goldman M
    J Am Coll Cardiol; 1992 Dec; 20(7):1661-8. PubMed ID: 1452941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wall shear rate in arterioles in vivo: least estimates from platelet velocity profiles.
    Tangelder GJ; Slaaf DW; Arts T; Reneman RS
    Am J Physiol; 1988 Jun; 254(6 Pt 2):H1059-64. PubMed ID: 3381893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New strategy of platelet substitutes for enhancing platelet aggregation at high shear rates: cooperative effects of a mixed system of fibrinogen gamma-chain dodecapeptide- or glycoprotein Ibalpha-conjugated latex beads under flow conditions.
    Okamura Y; Handa M; Suzuki H; Ikeda Y; Takeoka S
    J Artif Organs; 2006; 9(4):251-8. PubMed ID: 17171404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter.
    Reinke W; Johnson PC; Gaehtgens P
    Circ Res; 1986 Aug; 59(2):124-32. PubMed ID: 3742742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of hematocrit and leukocyte adherence on flow direction in the microcirculation.
    King MR; Bansal D; Kim MB; Sarelius IH
    Ann Biomed Eng; 2004 Jun; 32(6):803-14. PubMed ID: 15255211
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Resistance to blood flow in microvessels in vivo.
    Pries AR; Secomb TW; Gessner T; Sperandio MB; Gross JF; Gaehtgens P
    Circ Res; 1994 Nov; 75(5):904-15. PubMed ID: 7923637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microhemodynamics of blood flow in narrow glass capillaries of 9 to 20 micrometers; the Fahraeus effect.
    Ohshima N; Sato M; Oda N
    Biorheology; 1988; 25(1-2):339-48. PubMed ID: 3196831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of platelet margination phenomena at elevated shear stress.
    Zhao R; Kameneva MV; Antaki JF
    Biorheology; 2007; 44(3):161-77. PubMed ID: 17851165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mathematical analysis of mural thrombogenesis. Concentration profiles of platelet-activating agents and effects of viscous shear flow.
    Folie BJ; McIntire LV
    Biophys J; 1989 Dec; 56(6):1121-41. PubMed ID: 2611327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Blood flow in single surface arterioles and venules on the mouse somatosensory cortex measured with videomicroscopy, fluorescent dextrans, nonoccluding fluorescent beads, and computer-assisted image analysis.
    Rovainen CM; Woolsey TA; Blocher NC; Wang DB; Robinson OF
    J Cereb Blood Flow Metab; 1993 May; 13(3):359-71. PubMed ID: 7683023
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The high splenic hematocrit: a rheological consequence of red cell flow through the reticular meshwork.
    MacDonald IC; Schmidt EE; Groom AC
    Microvasc Res; 1991 Jul; 42(1):60-76. PubMed ID: 1921755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The use of fluorescent labeled erythrocytes for intravital investigation of flow and local hematocrit in glomerular capillaries in the rat.
    Zimmerhackl B; Parekh N; Brinkhus H; Steinhausen M
    Int J Microcirc Clin Exp; 1983; 2(2):119-29. PubMed ID: 6678842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of hemofiltration on fiber platelet concentration.
    Drake KL; Eckstein EC
    Artif Organs; 1981 Nov; 5(4):363-71. PubMed ID: 7325878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Near-wall excess of platelets induced by lateral migration of erythrocytes in flowing blood.
    Uijttewaal WS; Nijhof EJ; Bronkhorst PJ; Den Hartog E; Heethaar RM
    Am J Physiol; 1993 Apr; 264(4 Pt 2):H1239-44. PubMed ID: 8476101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drag-reducing polymers diminish near-wall concentration of platelets in microchannel blood flow.
    Zhao R; Marhefka JN; Antaki JF; Kameneva MV
    Biorheology; 2010; 47(3-4):193-203. PubMed ID: 21084744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Blood modeling using polystyrene microspheres.
    Fukada E; Seaman GV; Liepsch D; Lee M; Friis-Baastad L
    Biorheology; 1989; 26(2):401-13. PubMed ID: 2481519
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shear stress gradient over endothelial cells in a curved microchannel system.
    Frame MD; Chapman GB; Makino Y; Sarelius IH
    Biorheology; 1998; 35(4-5):245-61. PubMed ID: 10474653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Platelet near-wall excess in porcine whole blood in artery-sized tubes under steady and pulsatile flow conditions.
    Xu C; Wootton DM
    Biorheology; 2004; 41(2):113-25. PubMed ID: 15090680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.