These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 35870886)

  • 1. Multiple-trait analyses improved the accuracy of genomic prediction and the power of genome-wide association of productivity and climate change-adaptive traits in lodgepole pine.
    Cappa EP; Chen C; Klutsch JG; Sebastian-Azcona J; Ratcliffe B; Wei X; Da Ros L; Ullah A; Liu Y; Benowicz A; Sadoway S; Mansfield SD; Erbilgin N; Thomas BR; El-Kassaby YA
    BMC Genomics; 2022 Jul; 23(1):536. PubMed ID: 35870886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving lodgepole pine genomic evaluation using spatial correlation structure and SNP selection with single-step GBLUP.
    Cappa EP; Ratcliffe B; Chen C; Thomas BR; Liu Y; Klutsch J; Wei X; Azcona JS; Benowicz A; Sadoway S; Erbilgin N; El-Kassaby YA
    Heredity (Edinb); 2022 Apr; 128(4):209-224. PubMed ID: 35181761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic selection for resistance to mammalian bark stripping and associated chemical compounds in radiata pine.
    Nantongo JS; Potts BM; Klápště J; Graham NJ; Dungey HS; Fitzgerald H; O'Reilly-Wapstra JM
    G3 (Bethesda); 2022 Nov; 12(11):. PubMed ID: 36218439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic dissection of additive and non-additive genetic effects and genomic prediction in an open-pollinated family test of Japanese larch.
    Dong L; Xie Y; Zhang Y; Wang R; Sun X
    BMC Genomics; 2024 Jan; 25(1):11. PubMed ID: 38166605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non-genotyped trees by single-step GBLUP.
    Cappa EP; de Lima BM; da Silva-Junior OB; Garcia CC; Mansfield SD; Grattapaglia D
    Plant Sci; 2019 Jul; 284():9-15. PubMed ID: 31084883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of genomic prediction within and across generations in maritime pine.
    Bartholomé J; Van Heerwaarden J; Isik F; Boury C; Vidal M; Plomion C; Bouffier L
    BMC Genomics; 2016 Aug; 17(1):604. PubMed ID: 27515254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic studies with preselected markers reveal dominance effects influencing growth traits in Eucalyptus nitens.
    Thumma BR; Joyce KR; Jacobs A
    G3 (Bethesda); 2022 Jan; 12(1):. PubMed ID: 34791210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic Studies Reveal Substantial Dominant Effects and Improved Genomic Predictions in an Open-Pollinated Breeding Population of
    Thavamanikumar S; Arnold RJ; Luo J; Thumma BR
    G3 (Bethesda); 2020 Oct; 10(10):3751-3763. PubMed ID: 32788286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of genomic selection for growth and wood quality traits in two control-pollinated progeny trials using exome capture as the genotyping platform in Norway spruce.
    Chen ZQ; Baison J; Pan J; Karlsson B; Andersson B; Westin J; García-Gil MR; Wu HX
    BMC Genomics; 2018 Dec; 19(1):946. PubMed ID: 30563448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide association study and prediction of genomic breeding values for fatty-acid composition in Korean Hanwoo cattle using a high-density single-nucleotide polymorphism array.
    Bhuiyan MSA; Kim YK; Kim HJ; Lee DH; Lee SH; Yoon HB; Lee SH
    J Anim Sci; 2018 Sep; 96(10):4063-4075. PubMed ID: 30265318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic selection for non-key traits in radiata pine when the documented pedigree is corrected using DNA marker information.
    Li Y; Klápště J; Telfer E; Wilcox P; Graham N; Macdonald L; Dungey HS
    BMC Genomics; 2019 Dec; 20(1):1026. PubMed ID: 31881838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using landscape genomics to delineate seed and breeding zones for lodgepole pine.
    Yu Y; Aitken SN; Rieseberg LH; Wang T
    New Phytol; 2022 Aug; 235(4):1653-1664. PubMed ID: 35569109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic dissection and prediction of feed intake and residual feed intake traits using a longitudinal model in F2 chickens.
    Emamgholi Begli H; Vaez Torshizi R; Masoudi AA; Ehsani A; Jensen J
    Animal; 2018 Sep; 12(9):1792-1798. PubMed ID: 29268803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the efficiency of genomic versus pedigree predictions for growth and wood quality traits in Scots pine.
    Calleja-Rodriguez A; Pan J; Funda T; Chen Z; Baison J; Isik F; Abrahamsson S; Wu HX
    BMC Genomics; 2020 Nov; 21(1):796. PubMed ID: 33198692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide association mapping and genomic prediction of agronomical traits and breeding values in Iranian wheat under rain-fed and well-watered conditions.
    Rabieyan E; Bihamta MR; Moghaddam ME; Mohammadi V; Alipour H
    BMC Genomics; 2022 Dec; 23(1):831. PubMed ID: 36522726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. (Quasi) multitask support vector regression with heuristic hyperparameter optimization for whole-genome prediction of complex traits: a case study with carcass traits in broilers.
    Alves AAC; Fernandes AFA; Lopes FB; Breen V; Hawken R; Gianola D; Rosa GJM
    G3 (Bethesda); 2023 Aug; 13(8):. PubMed ID: 37216670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of introgression on the genetic population structure of two ecologically and economically important conifer species: lodgepole pine (Pinus contorta var. latifolia) and jack pine (Pinus banksiana).
    Cullingham CI; Cooke JE; Coltman DW
    Genome; 2013 Oct; 56(10):577-85. PubMed ID: 24237338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide prediction using Bayesian additive regression trees.
    Waldmann P
    Genet Sel Evol; 2016 Jun; 48(1):42. PubMed ID: 27286957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide association study and genomic prediction in citrus: Potential of genomics-assisted breeding for fruit quality traits.
    Minamikawa MF; Nonaka K; Kaminuma E; Kajiya-Kanegae H; Onogi A; Goto S; Yoshioka T; Imai A; Hamada H; Hayashi T; Matsumoto S; Katayose Y; Toyoda A; Fujiyama A; Nakamura Y; Shimizu T; Iwata H
    Sci Rep; 2017 Jul; 7(1):4721. PubMed ID: 28680114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of high-density genotypic data and different methods on joint genomic prediction: A case study in large white pigs.
    Zhao W; Zhang Z; Ma P; Wang Z; Wang Q; Zhang Z; Pan Y
    Anim Genet; 2023 Feb; 54(1):45-54. PubMed ID: 36414135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.