These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35871504)

  • 1. Floating Hydrogel Beads Made by Droplet Impact.
    Chu Y; Liao S; Wang Q; Ma Y; Wang Y
    Small; 2022 Aug; 18(33):e2203355. PubMed ID: 35871504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A modified emulsion gelation technique to improve buoyancy of hydrogel tablets for floating drug delivery systems.
    Yom-Tov O; Seliktar D; Bianco-Peled H
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():335-42. PubMed ID: 26117764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile fabrication of well-defined hydrogel beads with magnetic nanocomposite shells.
    Liu H; Wang C; Gao Q; Chen J; Ren B; Liu X; Tong Z
    Int J Pharm; 2009 Jul; 376(1-2):92-8. PubMed ID: 19409471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formulation and evaluation of floating drug delivery system of famotidine.
    Satishbabu BK; Sandeep VR; Ravi RB; Shrutinag R
    Indian J Pharm Sci; 2010 Nov; 72(6):738-44. PubMed ID: 21969746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formulation development and evaluation of gastroretentive floating beads with Brucea javanica oil using ionotropic gelation technology.
    Zhang Y; Zhang XT; Zhang Q; Wang B; Zhang T
    Chin J Nat Med; 2018 Apr; 16(4):293-301. PubMed ID: 29703329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and evaluation of alginate-chitosan gastric floating beads loading with oxymatrine solid dispersion.
    Liu Y; Chen L; Zhou C; Yang J; Hou Y; Wang W
    Drug Dev Ind Pharm; 2016; 42(3):456-63. PubMed ID: 26422447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic production of single micrometer-sized hydrogel beads utilizing droplet dissolution in a polar solvent.
    Sugaya S; Yamada M; Hori A; Seki M
    Biomicrofluidics; 2013; 7(5):54120. PubMed ID: 24396529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formulation and evaluation of floating mucoadhesive alginate beads for targeting Helicobacter pylori.
    Adebisi AO; Laity PR; Conway BR
    J Pharm Pharmacol; 2015 Apr; 67(4):511-24. PubMed ID: 25496042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of droplets on immiscible liquid films.
    Che Z; Matar OK
    Soft Matter; 2018 Feb; 14(9):1540-1551. PubMed ID: 29350232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of innovated lipid-based floating beads loaded with an antispasmodic drug: in-vitro and in-vivo evaluation.
    Adel S; ElKasabgy NA
    J Liposome Res; 2014 Jun; 24(2):136-49. PubMed ID: 24236529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of novel core-shell hybrid alginate hydrogel beads.
    Liu H; Wang C; Gao Q; Liu X; Tong Z
    Int J Pharm; 2008 Mar; 351(1-2):104-12. PubMed ID: 17964745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One pot synthesis of new poly(vinyl alcohol) blended natural polymer based magnetic hydrogel beads: Controlled natural anticancer alkaloid delivery system.
    Kesavan MP; Ayyanaar S; Lenin N; Sankarganesh M; Dhaveethu Raja J; Rajesh J
    J Biomed Mater Res A; 2018 Feb; 106(2):543-551. PubMed ID: 28984081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formulation and statistical optimization of gastric floating alginate/oil/chitosan capsules loading procyanidins: in vitro and in vivo evaluations.
    Chen R; Guo X; Liu X; Cui H; Wang R; Han J
    Int J Biol Macromol; 2018 Mar; 108():1082-1091. PubMed ID: 29128589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication, Evaluation, In Vivo Pharmacokinetic and Toxicological Analysis of pH-Sensitive Eudragit S-100-Coated Hydrogel Beads: a Promising Strategy for Colon Targeting.
    Rehman S; Ranjha NM; Shoukat H; Madni A; Ahmad F; Raza MR; Jameel QA; Majeed A; Ramzan N
    AAPS PharmSciTech; 2021 Jul; 22(6):209. PubMed ID: 34312763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology and buoyancy of oil-entrapped calcium pectinate gel beads.
    Sriamornsak P; Thirawong N; Puttipipatkhachorn S
    AAPS J; 2004 Oct; 6(3):e24. PubMed ID: 15760109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tapioca starch blended alginate mucoadhesive-floating beads for intragastric delivery of Metoprolol Tartrate.
    Biswas N; Sahoo RK
    Int J Biol Macromol; 2016 Feb; 83():61-70. PubMed ID: 26592698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of surfactant/cosurfactant synergism impact on ibuprofen solubilization capacity and drug release characteristics of nonionic microemulsions.
    Djekic L; Primorac M; Filipic S; Agbaba D
    Int J Pharm; 2012 Aug; 433(1-2):25-33. PubMed ID: 22579578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical approach for assessing the influence of calcium silicate and HPMC on the formulation of novel alfuzosin hydrochloride mucoadhesive-floating beads as gastroretentive drug delivery systems.
    Fahmy RH
    AAPS PharmSciTech; 2012 Sep; 13(3):990-1004. PubMed ID: 22806818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional Hierarchically-Assembled Hydrogel Particles with Pollen Grains via Pickering Suspension Polymerization.
    Park J; Doyle PS
    Langmuir; 2018 Dec; 34(48):14643-14651. PubMed ID: 30400737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of hollow/porous floating beads of metoprolol for pulsatile drug delivery.
    Taranalli SS; Dandagi PM; Mastiholimath VS
    Eur J Drug Metab Pharmacokinet; 2015 Jun; 40(2):225-33. PubMed ID: 24744159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.