BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35871553)

  • 1. Electronic Metal-Support Interaction Directing the Design of Fe(III)-Based Catalysts for Efficient Advanced Oxidation Processes by Dual Reaction Paths.
    Xie M; Dai F; Wang Y; Lv W; Zhang Z; Lu X
    Small; 2022 Aug; 18(33):e2203269. PubMed ID: 35871553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired Nonheme Iron Catalysts for C-H and C═C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants.
    Oloo WN; Que L
    Acc Chem Res; 2015 Sep; 48(9):2612-21. PubMed ID: 26280131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Validation and Computational Predictions Join Forces to Map Catalytic C-H Activation in Ferrocene Metalated Porous Organic Polymers.
    Boro B; Paul R; Tan HL; Trinh QT; Rabeah J; Chang CC; Pao CW; Liu W; Nguyen NT; Mai BK; Mondal J
    ACS Appl Mater Interfaces; 2023 May; 15(17):21027-21039. PubMed ID: 37083336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. μ-Nitrido Diiron Macrocyclic Platform: Particular Structure for Particular Catalysis.
    Afanasiev P; Sorokin AB
    Acc Chem Res; 2016 Apr; 49(4):583-93. PubMed ID: 26967682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonradical Oxidation of Pollutants with Single-Atom-Fe(III)-Activated Persulfate: Fe(V) Being the Possible Intermediate Oxidant.
    Jiang N; Xu H; Wang L; Jiang J; Zhang T
    Environ Sci Technol; 2020 Nov; 54(21):14057-14065. PubMed ID: 33094996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid PFOS mineralization with peroxydisulfate activation process mediated by N modified Fe-based catalyst.
    Jiang Y; Hu Y; Yu Z; Lv Y; Liu Y; Li X; Lin C; Ye X; Yang G; Liu M
    Ecotoxicol Environ Saf; 2023 Sep; 263():115364. PubMed ID: 37586198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persulfate activation by two-dimensional MoS
    Huang LZ; Zhou C; Shen M; Gao E; Zhang C; Hu XM; Chen Y; Xue Y; Liu Z
    J Hazard Mater; 2020 May; 389():122137. PubMed ID: 32004841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introducing saccharic acid as an efficient iron chelate to enhance photo-Fenton degradation of organic contaminants.
    Subramanian G; Madras G
    Water Res; 2016 Nov; 104():168-177. PubMed ID: 27522633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulating electronic structure of Fe single-atom site by S/N dual-coordination for efficient Fenton-like catalysis.
    Dai H; Zhao Z; Wang K; Meng F; Lin D; Zhou W; Chen D; Zhang M; Yang D
    J Hazard Mater; 2024 Mar; 465():133399. PubMed ID: 38163411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic C-H bond amination from high-spin iron imido complexes.
    King ER; Hennessy ET; Betley TA
    J Am Chem Soc; 2011 Apr; 133(13):4917-23. PubMed ID: 21405138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient removal of acid orange 7 using a porous adsorbent-supported zero-valent iron as a synergistic catalyst in advanced oxidation process.
    Du Y; Dai M; Cao J; Peng C; Ali I; Naz I; Li J
    Chemosphere; 2020 Apr; 244():125522. PubMed ID: 31830643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions-Influence of Fe(II)/Fe(III) ratio on catalytic performance.
    Rusevova K; Kopinke FD; Georgi A
    J Hazard Mater; 2012 Nov; 241-242():433-40. PubMed ID: 23098995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural siderite derivatives activated peroxydisulfate toward oxidation of organic contaminant: A green soil remediation strategy.
    Zhong C; Jiang Y; Liu Q; Sun X; Yu J
    J Environ Sci (China); 2023 May; 127():615-627. PubMed ID: 36522091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Electronic Metal-Support Interaction Directing the Design of Single Atomic Site Catalysts: Achieving High Efficiency Towards Hydrogen Evolution.
    Yang J; Li WH; Tan S; Xu K; Wang Y; Wang D; Li Y
    Angew Chem Int Ed Engl; 2021 Aug; 60(35):19085-19091. PubMed ID: 34155750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of iron species in the photo-transformation of phenol in artificial and natural seawater.
    Calza P; Massolino C; Pelizzetti E; Minero C
    Sci Total Environ; 2012 Jun; 426():281-8. PubMed ID: 22503675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an Fe(V)=O active species.
    Chen K; Que L
    J Am Chem Soc; 2001 Jul; 123(26):6327-37. PubMed ID: 11427057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfur or nitrogen-doped rGO supported Fe-Mn bimetal - organic frameworks composite as an efficient heterogeneous catalyst for degradation of sulfamethazine via peroxydisulfate activation.
    Chu D; Dong H; Li Y; Xiao J; Hou X; Xiang S; Dong Q
    J Hazard Mater; 2022 Aug; 436():129183. PubMed ID: 35739714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron-Based Dual Active Site-Mediated Peroxymonosulfate Activation for the Degradation of Emerging Organic Pollutants.
    Wang S; Xu L; Wang J
    Environ Sci Technol; 2021 Nov; 55(22):15412-15422. PubMed ID: 34697942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organometallic μ-Nitridodiiron Complexes in Oxidation States Ranging from (III/III) to (IV/IV).
    Cordes Née Kupper C; Klawitter I; Rüter I; Dechert S; Demeshko S; Ye S; Meyer F
    Inorg Chem; 2022 May; 61(18):7153-7164. PubMed ID: 35475617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How low does iron go? Chasing the active species in fe-catalyzed cross-coupling reactions.
    Bedford RB
    Acc Chem Res; 2015 May; 48(5):1485-93. PubMed ID: 25916260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.