These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35871847)

  • 1. Carotenoids: Carotenoid and apocarotenoid analysis-Use of E. coli to produce carotenoid standards.
    Misawa N; Maoka T; Takemura M
    Methods Enzymol; 2022; 670():87-137. PubMed ID: 35871847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of directed enzyme evolution to create novel biosynthetic pathways for production of rare or non-natural carotenoids.
    Furubayashi M; Umeno D
    Methods Enzymol; 2022; 671():351-382. PubMed ID: 35878986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of carotenoid degradation and production of apocarotenoids in natural and engineered organisms.
    Liang MH; He YJ; Liu DM; Jiang JG
    Crit Rev Biotechnol; 2021 Jun; 41(4):513-534. PubMed ID: 33541157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. When Carotenoid Biosynthesis Genes Met Escherichia coli : The Early Days and These Days.
    Misawa N
    Adv Exp Med Biol; 2021; 1261():183-189. PubMed ID: 33783740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 4,4'-Diaponeurosporene Production as C
    Kim M; Jung DH; Hwang CY; Siziya IN; Park YS; Seo MJ
    Appl Biochem Biotechnol; 2023 Jan; 195(1):135-151. PubMed ID: 36066805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of the carotenoid biosynthetic pathway of Cronobacter sakazakii BAA894 in Escherichia coli.
    Zhang W; Hu X; Wang L; Wang X
    PLoS One; 2014; 9(1):e86739. PubMed ID: 24466219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterologous complementation in bacteria for functional analysis of genes encoding carotenoid biosynthetic enzymes.
    Moreno JC; Stange C
    Methods Enzymol; 2022; 671():471-488. PubMed ID: 35878990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carotenoid and Apocarotenoid Analysis by SFE-SFC-QqQ/MS.
    Giuffrida D; Zoccali M; Mondello L
    Methods Mol Biol; 2020; 2083():209-219. PubMed ID: 31745924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acyclic carotenoid and cyclic apocarotenoid cleavage by an orthologue of lignostilbene-α,β-dioxygenase in Rhodopseudomonas palustris.
    Maeda I; Inaba A; Koike H; Yoneyama K; Ueda S; Yoshida K
    J Biochem; 2013 Nov; 154(5):449-54. PubMed ID: 23946507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A portfolio of plasmids for identification and analysis of carotenoid pathway enzymes: Adonis aestivalis as a case study.
    Cunningham FX; Gantt E
    Photosynth Res; 2007 May; 92(2):245-59. PubMed ID: 17634749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain-dependent carotenoid productions in metabolically engineered Escherichia coli.
    Chae HS; Kim KH; Kim SC; Lee PC
    Appl Biochem Biotechnol; 2010 Dec; 162(8):2333-44. PubMed ID: 20559754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of carotenoid cleavage dioxygenases from Nostoc sp. PCC 7120 with different cleavage activities.
    Marasco EK; Vay K; Schmidt-Dannert C
    J Biol Chem; 2006 Oct; 281(42):31583-93. PubMed ID: 16920703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of a Nonnatural C
    Li L; Furubayashi M; Hosoi T; Seki T; Otani Y; Kawai-Noma S; Saito K; Umeno D
    ACS Synth Biol; 2019 Mar; 8(3):511-520. PubMed ID: 30689939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carotenoid metabolism during bilberry (Vaccinium myrtillus L.) fruit development under different light conditions is regulated by biosynthesis and degradation.
    Karppinen K; Zoratti L; Sarala M; Carvalho E; Hirsimäki J; Mentula H; Martens S; Häggman H; Jaakola L
    BMC Plant Biol; 2016 Apr; 16():95. PubMed ID: 27098458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carotenoids biosynthesis and cleavage related genes from bacteria to plants.
    Liang MH; Zhu J; Jiang JG
    Crit Rev Food Sci Nutr; 2018; 58(14):2314-2333. PubMed ID: 28609133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating Carotenoid Biosynthetic Enzyme Localization and Interactions Using Fluorescent Microscopy.
    Shumskaya M; Quinlan RF; Wurtzel ET
    Methods Mol Biol; 2020; 2083():223-234. PubMed ID: 31745925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of apocarotenoid volatiles during the development of Ficus carica fruits and characterization of carotenoid cleavage dioxygenase genes.
    Nawade B; Shaltiel-Harpaz L; Yahyaa M; Bosamia TC; Kabaha A; Kedoshim R; Zohar M; Isaacson T; Ibdah M
    Plant Sci; 2020 Jan; 290():110292. PubMed ID: 31779901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apocarotenoids: A New Carotenoid-Derived Pathway.
    Beltran JC; Stange C
    Subcell Biochem; 2016; 79():239-72. PubMed ID: 27485225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of structurally novel carotenoids in Escherichia coli.
    Lee PC; Momen AZ; Mijts BN; Schmidt-Dannert C
    Chem Biol; 2003 May; 10(5):453-62. PubMed ID: 12770827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo and in vitro studies on the carotenoid cleavage oxygenases from Sphingopyxis alaskensis RB2256 and Plesiocystis pacifica SIR-1 revealed their substrate specificities and non-retinal-forming cleavage activities.
    Hoffmann J; Bóna-Lovász J; Beuttler H; Altenbuchner J
    FEBS J; 2012 Oct; 279(20):3911-24. PubMed ID: 22901074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.