These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Comparison of calcium magnesium ferrite nanoparticles for boosting biohydrogen production. Wang R; Zhang H; Zhang J; Zhou C; Zhang X; Yan X; Yu F; Zhang J Bioresour Technol; 2024 Mar; 395():130410. PubMed ID: 38307484 [TBL] [Abstract][Full Text] [Related]
3. Comparison of mesophilic and thermophilic dark fermentation with nickel ferrite nanoparticles supplementation for biohydrogen production. Zhang J; Zhao W; Yang J; Li Z; Zhang J; Zang L Bioresour Technol; 2021 Jun; 329():124853. PubMed ID: 33621929 [TBL] [Abstract][Full Text] [Related]
4. Unraveling the roles of lanthanum-iron oxide nanoparticles in biohydrogen production. Yang J; Zhang H; Liu H; Zhang J; Pei Y; Zang L Bioresour Technol; 2022 May; 351():127027. PubMed ID: 35314310 [TBL] [Abstract][Full Text] [Related]
5. Hydrothermal carbon microspheres and their iron salt modification for enhancing biohydrogen production. Pei Y; Zhang J; Zhou C; Tian K; Zhang X; Yan X Bioresour Technol; 2023 Oct; 385():129371. PubMed ID: 37348568 [TBL] [Abstract][Full Text] [Related]
6. Magnetic nitrogen-doped activated carbon improved biohydrogen production. Tian K; Zhang J; Zhou C; Yang M; Zhang X; Yan X; Zang L Environ Sci Pollut Res Int; 2023 Aug; 30(37):87215-87227. PubMed ID: 37420156 [TBL] [Abstract][Full Text] [Related]
7. Comparison of copper and aluminum doped cobalt ferrate nanoparticles for improving biohydrogen production. Li W; Zhang J; Yang J; Zhang J; Li Z; Yang Y; Zang L Bioresour Technol; 2022 Jan; 343():126078. PubMed ID: 34606925 [TBL] [Abstract][Full Text] [Related]
8. Co-fermentation of residual algal biomass and glucose under the influence of Fe Srivastava N; Srivastava M; Singh R; Syed A; Bahadur Pal D; Elgorban AM; Kushwaha D; Mishra PK; Gupta VK Bioresour Technol; 2021 Dec; 342():126034. PubMed ID: 34592453 [TBL] [Abstract][Full Text] [Related]
9. Revealing the roles of carbonized humic acid in biohydrogen production. Tian K; Zhang J; Zhou C; Liu H; Pei Y; Zhang X; Yan X Bioresour Technol; 2023 Oct; 386():129506. PubMed ID: 37468005 [TBL] [Abstract][Full Text] [Related]
11. Improving mechanisms of biohydrogen production from grass using zero-valent iron nanoparticles. Yang G; Wang J Bioresour Technol; 2018 Oct; 266():413-420. PubMed ID: 29982065 [TBL] [Abstract][Full Text] [Related]
12. Enhanced biohydrogen production from macroalgae by zero-valent iron nanoparticles: Insights into microbial and metabolites distribution. Yin Y; Wang J Bioresour Technol; 2019 Jun; 282():110-117. PubMed ID: 30852330 [TBL] [Abstract][Full Text] [Related]
13. Enhanced hydrogen production from water hyacinth by a combination of ultrasonic-assisted alkaline pretreatment, dark fermentation, and microbial electrolysis cell. Thu Ha Tran T; Khanh Thinh Nguyen P Bioresour Technol; 2022 Aug; 357():127340. PubMed ID: 35598775 [TBL] [Abstract][Full Text] [Related]
14. Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes. Lin R; Cheng J; Ding L; Song W; Liu M; Zhou J; Cen K Bioresour Technol; 2016 May; 207():213-9. PubMed ID: 26890796 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of carbonized humic acid and magnesium aluminum-layered double hydroxide promoting biohydrogen generation. Tian K; Zhang J; Liu H; Wang R; Zhang Z Bioresour Technol; 2024 Dec; 413():131563. PubMed ID: 39362343 [TBL] [Abstract][Full Text] [Related]
16. Augmented biohydrogen production from rice mill wastewater through nano-metal oxides assisted dark fermentation. Rambabu K; Bharath G; Thanigaivelan A; Das DB; Show PL; Banat F Bioresour Technol; 2021 Jan; 319():124243. PubMed ID: 33254466 [TBL] [Abstract][Full Text] [Related]
17. Hydroxyapatite Fabrication for Enhancing Biohydrogen Production from Glucose Dark Fermentation. Mo H; Wang N; Ma Z; Zhang J; Zhang J; Wang L; Dong W; Zang L ACS Omega; 2022 Mar; 7(12):10550-10558. PubMed ID: 35382266 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of metabolism using stoichiometry in fermentative biohydrogen. Lee HS; Rittmann BE Biotechnol Bioeng; 2009 Feb; 102(3):749-58. PubMed ID: 18828179 [TBL] [Abstract][Full Text] [Related]
19. Application of a novel biological-nanoparticle pretreatment to Oscillatoria acuminata biomass and coculture dark fermentation for improving hydrogen production. El-Sheekh M; Elshobary M; Abdullah E; Abdel-Basset R; Metwally M Microb Cell Fact; 2023 Feb; 22(1):34. PubMed ID: 36814252 [TBL] [Abstract][Full Text] [Related]
20. Biohydrogen production through dark fermentation by a microbial consortium using whey permeate as substrate. Romão BB; Batista FR; Ferreira JS; Costa HC; Resende MM; Cardoso VL Appl Biochem Biotechnol; 2014 Apr; 172(7):3670-85. PubMed ID: 24562979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]