BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35872537)

  • 1. Synthesis of carbon dots-based covalent organic nanomaterial as stationary phase for open tubular capillary electrochromatography.
    Fu Y; Li Z; Hu C; Li Q; Chen Z
    J Chromatogr A; 2022 Aug; 1678():463343. PubMed ID: 35872537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Preparation of a two-dimensional azine-linked covalent organic framework-coated capillary and its application to the separation of nitrophenol environmental endocrine disruptors by open-tubular capillary electrochromatography].
    Zhao L; Lü W; Niu X; Pan C; Chen H; Chen X
    Se Pu; 2020 Sep; 38(9):1095-1101. PubMed ID: 34213276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ growth of imine-based covalent organic framework as stationary phase for high-efficiency electrochromatographic separation.
    Li Z; Liao Z; Hu J; Chen Z
    J Chromatogr A; 2023 Apr; 1694():463905. PubMed ID: 36881971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-situ immobilization of covalent organic frameworks as stationary phase for capillary electrochromatography.
    Fu Y; Li Z; Hu C; Li Q; Chen Z
    J Chromatogr A; 2023 Aug; 1705():464205. PubMed ID: 37442070
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    He N; Li Z; Hu C; Chen Z
    J Pharm Anal; 2022 Aug; 12(4):610-616. PubMed ID: 36105161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A covalent organic framework for chiral capillary electrochromatography using a cyclodextrin mobile phase additive.
    Gao L; Zhao X; Qin S; Dong Q; Hu X; Chu H
    Chirality; 2022 Mar; 34(3):537-549. PubMed ID: 34997664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorinated covalent organic frameworks as a stationary phase for separation of fluoroquinolones by capillary electrochromatography.
    Zong R; Yin H; Xiang Y; Zhang L; Ye N
    Mikrochim Acta; 2022 May; 189(6):237. PubMed ID: 35643990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ room-temperature preparation of a covalent organic framework as stationary phase for high-efficiency capillary electrochromatographic separation.
    Fu Y; Li Z; Li Q; Hu C; Liu Y; Sun W; Chen Z
    J Chromatogr A; 2021 Jul; 1649():462239. PubMed ID: 34034110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Room-temperature growth of covalent organic frameworks as the stationary phase for open-tubular capillary electrochromatography.
    Li Q; Li Z; Fu Y; Clarot I; Boudier A; Chen Z
    Analyst; 2021 Oct; 146(21):6643-6649. PubMed ID: 34591047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of multifunctional crown ether covalent organic nanospheres as stationary phase for capillary electrochromatography.
    Hu C; Li Z; Hu Z; Li Q; Fu Y; Chen Z
    J Chromatogr A; 2022 Aug; 1677():463323. PubMed ID: 35853421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile room-temperature synthesis of a spherical mesoporous covalent organic framework for capillary electrochromatography.
    Li Z; Liao Z; Ding X; Hu J; Chen Z
    J Chromatogr A; 2024 Feb; 1716():464626. PubMed ID: 38232637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalent bonding of Schiff base network-1 as a stationary phase for capillary electrochromatography.
    Ye N; Wang X; Liu Q; Hu X
    Anal Chim Acta; 2018 Oct; 1028():113-120. PubMed ID: 29884348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of crystalline covalent organic framework as stationary phase for capillary electrochromatography.
    Li Q; Li Z; Fu Y; Hu C; Chen Z
    J Chromatogr A; 2022 Jun; 1673():463070. PubMed ID: 35526299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Preparation and application of porous organic cage capillary electrochromatographic chiral column].
    Jia W; Tang M; Zhang J; Yuan L
    Se Pu; 2022 Apr; 40(4):391-398. PubMed ID: 35362687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluoro-functionalized stationary phases for electrochromatographic separation of organic fluorides.
    Li Z; Mao Z; Hu C; Li Q; Chen Z
    J Chromatogr A; 2020 Aug; 1625():461269. PubMed ID: 32709321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ growth of a spherical vinyl-functionalized covalent organic framework as stationary phase for capillary electrochromatography-mass spectrometry analysis.
    Sun W; Liu Y; Zhou W; Li Z; Chen Z
    Talanta; 2021 Aug; 230():122330. PubMed ID: 33934787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ growth of Zr-based metal-organic framework UiO-66-NH
    Tang P; Wang R; Chen Z
    Electrophoresis; 2018 Oct; 39(20):2619-2625. PubMed ID: 29660144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polydopamine-supported immobilization of covalent-organic framework-5 in capillary as stationary phase for electrochromatographic separation.
    Bao T; Tang P; Kong D; Mao Z; Chen Z
    J Chromatogr A; 2016 May; 1445():140-8. PubMed ID: 27062718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ synthesis of homochiral metal-organic framework in capillary column for capillary electrochromatography enantioseparation.
    Pan C; Wang W; Zhang H; Xu L; Chen X
    J Chromatogr A; 2015 Apr; 1388():207-16. PubMed ID: 25725957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent organic framework TpPa-1 as stationary phase for capillary electrochromatographic separation of drugs and food additives.
    Kong D; Chen Z
    Electrophoresis; 2018 Nov; 39(22):2912-2918. PubMed ID: 30194854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.