These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 35872880)
1. Nanoparticle Fragmentation Below the Melting Point Under Single Picosecond Laser Pulse Stimulation. Kang P; Wang Y; Wilson BA; Liu Y; Dawkrajai N; Randrianalisoa J; Qin Z J Phys Chem C Nanomater Interfaces; 2021 Dec; 125(48):26718-26730. PubMed ID: 35872880 [TBL] [Abstract][Full Text] [Related]
2. Physical Regimes and Mechanisms of Picosecond Laser Fragmentation of Gold Nanoparticles in Water from X-ray Probing and Atomistic Simulations. Plech A; Tack M; Huang H; Arefev M; Ziefuss AR; Levantino M; Karadas H; Chen C; Zhigilei LV; Reichenberger S ACS Nano; 2024 Apr; 18(15):10527-10541. PubMed ID: 38567906 [TBL] [Abstract][Full Text] [Related]
3. Bimodal Size Distribution of Gold Nanoparticles under Picosecond Laser Pulses. Inasawa S; Sugiyama M; Yamaguchi Y J Phys Chem B; 2005 May; 109(19):9404-10. PubMed ID: 16852127 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms and advanced photothermal modelling of laser-induced shape transformations of colloidal gold nanorods by nanosecond laser pulses. Mansour Y; Battie Y; En Naciri A; Chaoui N Nanoscale; 2019 Jun; 11(24):11679-11686. PubMed ID: 31179482 [TBL] [Abstract][Full Text] [Related]
5. In situ structural kinetics of picosecond laser-induced heating and fragmentation of colloidal gold spheres. Ziefuss AR; Reich S; Reichenberger S; Levantino M; Plech A Phys Chem Chem Phys; 2020 Mar; 22(9):4993-5001. PubMed ID: 32096812 [TBL] [Abstract][Full Text] [Related]
6. The fragmentation mechanism of gold nanoparticles in water under femtosecond laser irradiation. Bongiovanni G; Olshin PK; Yan C; Voss JM; Drabbels M; Lorenz UJ Nanoscale Adv; 2021 Sep; 3(18):5277-5283. PubMed ID: 34589666 [TBL] [Abstract][Full Text] [Related]
7. Spectroscopic study of laser-induced phase transition of gold nanoparticles on nanosecond time scales and longer. Inasawa S; Sugiyama M; Noda S; Yamaguchi Y J Phys Chem B; 2006 Feb; 110(7):3114-9. PubMed ID: 16494317 [TBL] [Abstract][Full Text] [Related]
8. Short-pulse laser ablation of solids: from phase explosion to fragmentation. Lorazo P; Lewis LJ; Meunier M Phys Rev Lett; 2003 Nov; 91(22):225502. PubMed ID: 14683249 [TBL] [Abstract][Full Text] [Related]
9. Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: the origin of the bimodal size distribution. Shih CY; Streubel R; Heberle J; Letzel A; Shugaev MV; Wu C; Schmidt M; Gökce B; Barcikowski S; Zhigilei LV Nanoscale; 2018 Apr; 10(15):6900-6910. PubMed ID: 29561559 [TBL] [Abstract][Full Text] [Related]
10. Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting. Inasawa S; Sugiyama M; Yamaguchi Y J Phys Chem B; 2005 Mar; 109(8):3104-11. PubMed ID: 16851329 [TBL] [Abstract][Full Text] [Related]
11. The role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: I. Damage morphology. Ly S; Shen N; Negres RA; Carr CW; Alessi DA; Bude JD; Rigatti A; Laurence TA Opt Express; 2017 Jun; 25(13):15161-15178. PubMed ID: 28788946 [TBL] [Abstract][Full Text] [Related]
12. Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina. Vogel A; Capon MR; Asiyo-Vogel MN; Birngruber R Invest Ophthalmol Vis Sci; 1994 Jun; 35(7):3032-44. PubMed ID: 8206720 [TBL] [Abstract][Full Text] [Related]
13. Atomistic-Continuum Study of an Ultrafast Melting Process Controlled by a Femtosecond Laser-Pulse Train. Meng Y; Gong A; Chen Z; Wang Q; Guo J; Li Z; Li J Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38204038 [TBL] [Abstract][Full Text] [Related]
14. Pattern analysis of laser-tattoo interactions for picosecond- and nanosecond-domain 1,064-nm neodymium-doped yttrium-aluminum-garnet lasers in tissue-mimicking phantom. Ahn KJ; Zheng Z; Kwon TR; Kim BJ; Lee HS; Cho SB Sci Rep; 2017 May; 7(1):1533. PubMed ID: 28484226 [TBL] [Abstract][Full Text] [Related]
15. High orientation consistency and adjustable convex width of laser-induced periodic surface structures using picosecond laser pulse trains. Pan A; Wang W; Mei X; Xia Y; Sun X Nanotechnology; 2023 Jun; 34(37):. PubMed ID: 37257445 [TBL] [Abstract][Full Text] [Related]
16. Reflection of nanosecond Nd:YAG laser pulses in ablation of metals. Benavides O; Lebedeva O; Golikov V Opt Express; 2011 Oct; 19(22):21842-8. PubMed ID: 22109035 [TBL] [Abstract][Full Text] [Related]
17. Single-pulse laser ablation threshold of borosilicate, fused silica, sapphire, and soda-lime glass for pulse widths of 500 fs, 10 ps, 20 ns. Nieto D; Arines J; O'Connor GM; Flores-Arias MT Appl Opt; 2015 Oct; 54(29):8596-601. PubMed ID: 26479792 [TBL] [Abstract][Full Text] [Related]
18. From Femtosecond to Nanosecond Laser Microstructuring of Conical Aluminum Surfaces by Reactive Gas Assisted Laser Ablation. Rauh S; Wöbbeking K; Li M; Schade W; Hübner EG Chemphyschem; 2020 Aug; 21(15):1644-1652. PubMed ID: 32558311 [TBL] [Abstract][Full Text] [Related]
19. Mechanistic Understanding of DNA Denaturation in Nanoscale Thermal Gradients Created by Femtosecond Excitation of Gold Nanoparticles. Hastman DA; Chaturvedi P; Oh E; Melinger JS; Medintz IL; Vuković L; Díaz SA ACS Appl Mater Interfaces; 2022 Jan; 14(2):3404-3417. PubMed ID: 34982525 [TBL] [Abstract][Full Text] [Related]
20. Stimulated Thermal Scattering in Two-Photon Absorbing Nanocolloids under Laser Radiation of Nanosecond-to-Picosecond Pulse Widths. Erokhin AI; Bulychev NA; Parkevich EV; Medvedev MA; Smetanin IV Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35893535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]