These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 35873105)

  • 1. Inverting the Stereoselectivity of an NADH-Dependent Imine-Reductase Variant.
    Stockinger P; Borlinghaus N; Sharma M; Aberle B; Grogan G; Pleiss J; Nestl BM
    ChemCatChem; 2021 Dec; 13(24):5210-5215. PubMed ID: 35873105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A NADH-accepting imine reductase variant: Immobilization and cofactor regeneration by oxidative deamination.
    Gand M; Thöle C; Müller H; Brundiek H; Bashiri G; Höhne M
    J Biotechnol; 2016 Jul; 230():11-8. PubMed ID: 27164259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, Activity and Stereoselectivity of NADPH-Dependent Oxidoreductases Catalysing the S-Selective Reduction of the Imine Substrate 2-Methylpyrroline.
    Man H; Wells E; Hussain S; Leipold F; Hart S; Turkenburg JP; Turner NJ; Grogan G
    Chembiochem; 2015 May; 16(7):1052-9. PubMed ID: 25809902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of imine reductase-specific sequence motifs.
    Fademrecht S; Scheller PN; Nestl BM; Hauer B; Pleiss J
    Proteins; 2016 May; 84(5):600-10. PubMed ID: 26857686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Characterization of an
    Meyer T; Zumbrägel N; Geerds C; Gröger H; Niemann HH
    Biomolecules; 2020 Jul; 10(8):. PubMed ID: 32751900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Discovery of Imine Reductases and their Utilisation for the Synthesis of Tetrahydroisoquinolines.
    Cárdenas-Fernández M; Roddan R; Carter EM; Hailes HC; Ward JM
    ChemCatChem; 2023 Feb; 15(3):e202201126. PubMed ID: 37081856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cultivation and purification of two stereoselective imine reductases from Streptosporangium roseum and Paenibacillus elgii.
    Lenz M; Scheller PN; Richter SM; Hauer B; Nestl BM
    Protein Expr Purif; 2017 May; 133():199-204. PubMed ID: 27157442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational design of an imine reductase: mechanism-guided stereoselectivity reversion and interface stabilization.
    Wu K; Yan J; Liu Q; Wang X; Wu P; Cao Y; Lu X; Xu Y; Huang J; Shao L
    Chem Sci; 2024 Jan; 15(4):1431-1440. PubMed ID: 38274081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The biochemical characterization of three imine-reducing enzymes from Streptosporangium roseum DSM43021, Streptomyces turgidiscabies and Paenibacillus elgii.
    Scheller PN; Nestl BM
    Appl Microbiol Biotechnol; 2016 Dec; 100(24):10509-10520. PubMed ID: 27464826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence-Based
    Velikogne S; Resch V; Dertnig C; Schrittwieser JH; Kroutil W
    ChemCatChem; 2018 Aug; 10(15):3236-3246. PubMed ID: 30197686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atroposelective Synthesis of Axial Biaryls by Dynamic Kinetic Resolution Using Engineered Imine Reductases.
    Hao X; Tian Z; Yao Z; Zang T; Song S; Lin L; Qiao T; Huang L; Fu H
    Angew Chem Int Ed Engl; 2024 Jul; ():e202410112. PubMed ID: 39016184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. InspIRED by Nature: NADPH-Dependent Imine Reductases (IREDs) as Catalysts for the Preparation of Chiral Amines.
    Grogan G; Turner NJ
    Chemistry; 2016 Feb; 22(6):1900-1907. PubMed ID: 26667842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reductive amination of ketones catalyzed by whole cell biocatalysts containing imine reductases (IREDs).
    Maugeri Z; Rother D
    J Biotechnol; 2017 Sep; 258():167-170. PubMed ID: 28545904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semi-rational design of an imine reductase for asymmetric synthesis of alkylated
    Zhu F; Zhang J; Ma Y; Yang L; Gao Q; Gao S; Cui C
    Org Biomol Chem; 2023 May; 21(20):4181-4184. PubMed ID: 37129863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New imine-reducing enzymes from β-hydroxyacid dehydrogenases by single amino acid substitutions.
    Lenz M; Fademrecht S; Sharma M; Pleiss J; Grogan G; Nestl BM
    Protein Eng Des Sel; 2018 Apr; 31(4):109-120. PubMed ID: 29733377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extended Catalytic Scope of a Well-Known Enzyme: Asymmetric Reduction of Iminium Substrates by Glucose Dehydrogenase.
    Roth S; Präg A; Wechsler C; Marolt M; Ferlaino S; Lüdeke S; Sandon N; Wetzl D; Iding H; Wirz B; Müller M
    Chembiochem; 2017 Sep; 18(17):1703-1706. PubMed ID: 28722796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imine Reductases, Reductive Aminases, and Amine Oxidases for the Synthesis of Chiral Amines: Discovery, Characterization, and Synthetic Applications.
    Cosgrove SC; Brzezniak A; France SP; Ramsden JI; Mangas-Sanchez J; Montgomery SL; Heath RS; Turner NJ
    Methods Enzymol; 2018; 608():131-149. PubMed ID: 30173761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric Ketone Reduction by Imine Reductases.
    Lenz M; Meisner J; Quertinmont L; Lutz S; Kästner J; Nestl BM
    Chembiochem; 2017 Feb; 18(3):253-256. PubMed ID: 27911981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-guided semi-rational design of an imine reductase for enantio-complementary synthesis of pyrrolidinamine.
    Zhang J; Ma Y; Zhu F; Bao J; Wu Q; Gao SS; Cui C
    Chem Sci; 2023 Apr; 14(16):4265-4272. PubMed ID: 37123194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An (
    Hussain S; Leipold F; Man H; Wells E; France SP; Mulholland KR; Grogan G; Turner NJ
    ChemCatChem; 2015 Feb; 7(4):579-583. PubMed ID: 27547270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.