BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35873171)

  • 1. Structural New Data for Mitochondrial Peroxiredoxin From
    Rivera-Santiago L; Martínez I; Arroyo-Olarte R; Díaz-Garrido P; Cuevas-Hernandez RI; Espinoza B
    Front Cell Infect Microbiol; 2022; 12():907043. PubMed ID: 35873171
    [No Abstract]   [Full Text] [Related]  

  • 2. Peroxiredoxins play a major role in protecting Trypanosoma cruzi against macrophage- and endogenously-derived peroxynitrite.
    Piacenza L; Peluffo G; Alvarez MN; Kelly JM; Wilkinson SR; Radi R
    Biochem J; 2008 Mar; 410(2):359-68. PubMed ID: 17973627
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Specker G; Estrada D; Radi R; Piacenza L
    Front Cell Infect Microbiol; 2022; 12():749476. PubMed ID: 35186785
    [No Abstract]   [Full Text] [Related]  

  • 4. Coumarins isolated from Calophyllum brasiliense produce ultrastructural alterations and affect in vitro infectivity of Trypanosoma cruzi.
    Rodríguez-Hernández KD; Martínez I; Agredano-Moreno LT; Jiménez-García LF; Reyes-Chilpa R; Espinoza B
    Phytomedicine; 2019 Aug; 61():152827. PubMed ID: 31039535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial disfunction and ROS production are essential for anti-Trypanosoma cruzi activity of β-lapachone-derived naphthoimidazoles.
    Bombaça ACS; Viana PG; Santos ACC; Silva TL; Rodrigues ABM; Guimarães ACR; Goulart MOF; da Silva Júnior EN; Menna-Barreto RFS
    Free Radic Biol Med; 2019 Jan; 130():408-418. PubMed ID: 30445126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadening the spectrum of ivermectin: Its effect on
    Fraccaroli L; Ruiz MD; Perdomo VG; Clausi AN; Balcazar DE; Larocca L; Carrillo C
    Front Cell Infect Microbiol; 2022; 12():885268. PubMed ID: 35967842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mammea type coumarins isolated from Calophyllum brasiliense induced apoptotic cell death of Trypanosoma cruzi through mitochondrial dysfunction, ROS production and cell cycle alterations.
    Rodríguez-Hernández KD; Martínez I; Reyes-Chilpa R; Espinoza B
    Bioorg Chem; 2020 Jul; 100():103894. PubMed ID: 32388434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peroxiredoxins from Trypanosoma cruzi: virulence factors and drug targets for treatment of Chagas disease?
    Piñeyro MD; Parodi-Talice A; Arcari T; Robello C
    Gene; 2008 Jan; 408(1-2):45-50. PubMed ID: 18022330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal violet structural analogues identified by in silico drug repositioning present anti-Trypanosoma cruzi activity through inhibition of proline transporter TcAAAP069.
    Sayé M; Gauna L; Valera-Vera E; Reigada C; Miranda MR; Pereira CA
    PLoS Negl Trop Dis; 2020 Jan; 14(1):e0007481. PubMed ID: 31961864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peroxiredoxin 3 is a redox-dependent target of thiostrepton in malignant mesothelioma cells.
    Newick K; Cunniff B; Preston K; Held P; Arbiser J; Pass H; Mossman B; Shukla A; Heintz N
    PLoS One; 2012; 7(6):e39404. PubMed ID: 22761781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microalgae extracts: Potential anti-Trypanosoma cruzi agents?
    Veas R; Rojas-Pirela M; Castillo C; Olea-Azar C; Moncada M; Ulloa P; Rojas V; Kemmerling U
    Biomed Pharmacother; 2020 Jul; 127():110178. PubMed ID: 32371317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into Chagas treatment based on the potential of bacteriocin AS-48.
    Martín-Escolano R; Cebrián R; Martín-Escolano J; Rosales MJ; Maqueda M; Sánchez-Moreno M; Marín C
    Int J Parasitol Drugs Drug Resist; 2019 Aug; 10():1-8. PubMed ID: 30953804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization of Trypanosoma cruzi SAP proteins with host-cell lysosome exocytosis-inducing activity required for parasite invasion.
    Zanforlin T; Bayer-Santos E; Cortez C; Almeida IC; Yoshida N; da Silveira JF
    PLoS One; 2013; 8(12):e83864. PubMed ID: 24391838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elongation on aliphatic chain improves selectivity of 2-hydroxy-3,4,6-trimethoxyphenyl chalcone on
    Ribeiro LR; Magalhães EP; Barroso Gomes ND; Cavalcante JW; Gomes Maia MM; Marinho MM; Dos Santos HS; Marinho ES; Sampaio TL; Costa Martins AM; Paula Pessoa Bezerra de Menezes RR
    Future Med Chem; 2024 Jan; 16(1):11-26. PubMed ID: 38084595
    [No Abstract]   [Full Text] [Related]  

  • 15. Influence of Ecto-nucleoside triphosphate diphosphohydrolase activity on Trypanosoma cruzi infectivity and virulence.
    Santos RF; Pôssa MA; Bastos MS; Guedes PM; Almeida MR; Demarco R; Verjovski-Almeida S; Bahia MT; Fietto JL
    PLoS Negl Trop Dis; 2009; 3(3):e387. PubMed ID: 19255624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trypanosoma cruzi Letm1 is involved in mitochondrial Ca
    Dos Santos GRR; Rezende Leite AC; Lander N; Chiurillo MA; Vercesi AE; Docampo R
    FASEB J; 2021 Jul; 35(7):e21685. PubMed ID: 34085343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization and interactome analysis of Trypanosoma cruzi tryparedoxin II.
    Arias DG; Piñeyro MD; Iglesias AA; Guerrero SA; Robello C
    J Proteomics; 2015 Apr; 120():95-104. PubMed ID: 25765699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New perspectives for hydrogen peroxide in the amastigogenesis of Trypanosoma cruzi in vitro.
    Paula JIO; Pinto JDS; Rossini A; Nogueira NP; Paes MC
    Biochim Biophys Acta Mol Basis Dis; 2020 Dec; 1866(12):165951. PubMed ID: 32861766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficacy of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinone derivatives against different Trypanosoma cruzi discrete type units: Identification of a promising hit compound.
    Lara LS; Moreira CS; Calvet CM; Lechuga GC; Souza RS; Bourguignon SC; Ferreira VF; Rocha D; Pereira MCS
    Eur J Med Chem; 2018 Jan; 144():572-581. PubMed ID: 29289882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-Trypanosoma cruzi activity of costic acid isolated from Nectandra barbellata (Lauraceae) is associated with alterations in plasma membrane electric and mitochondrial membrane potentials.
    Londero VS; Costa-Silva TA; Tempone AG; Namiyama GM; Thevenard F; Antar GM; Baitello JB; Lago JHG
    Bioorg Chem; 2020 Jan; 95():103510. PubMed ID: 31884137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.