These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 35873434)
1. UPLC-MS/MS Profile Combined With RNA-Seq Reveals the Amino Acid Metabolism in Hu H; Fei X; He B; Chen X; Ma L; Han P; Luo Y; Liu Y; Wei A Front Nutr; 2022; 9():921742. PubMed ID: 35873434 [No Abstract] [Full Text] [Related]
2. Integrated Analysis of Metabolome and Transcriptome Data for Uncovering Flavonoid Components of Hu H; Fei X; He B; Luo Y; Qi Y; Wei A Front Nutr; 2021; 8():801244. PubMed ID: 35187022 [No Abstract] [Full Text] [Related]
3. Physiological and transcriptome analyses reveal the photosynthetic response to drought stress in drought-sensitive (Fengjiao) and drought-tolerant (Hanjiao) Hu H; He B; Ma L; Chen X; Han P; Luo Y; Liu Y; Fei X; Wei A Front Plant Sci; 2022; 13():968714. PubMed ID: 36186061 [TBL] [Abstract][Full Text] [Related]
4. Comparative Transcriptome Analysis and Expression of Genes Reveal the Biosynthesis and Accumulation Patterns of Key Flavonoids in Different Varieties of Sun L; Yu D; Wu Z; Wang C; Yu L; Wei A; Wang D J Agric Food Chem; 2019 Dec; 67(48):13258-13268. PubMed ID: 31714769 [No Abstract] [Full Text] [Related]
5. Chemical composition, chemotypic characterization, and histochemical localization of volatile components in different cultivars of Zanthoxylum bungeanum Maxim. leaves. Xu S; Yu L; Hou Y; Huang B; Wang H; Li D; Wang D J Food Sci; 2023 Apr; 88(4):1336-1348. PubMed ID: 36786362 [TBL] [Abstract][Full Text] [Related]
6. Plant Hormone Response to Low-Temperature Stress in Cold-Tolerant and Cold-Sensitive Varieties of Tian J; Ma Y; Chen Y; Chen X; Wei A Front Plant Sci; 2022; 13():847202. PubMed ID: 35574137 [TBL] [Abstract][Full Text] [Related]
7. Integrated Transcriptome and Metabolome Analysis Revealed That Flavonoid Biosynthesis May Dominate the Resistance of Li P; Ruan Z; Fei Z; Yan J; Tang G J Agric Food Chem; 2021 Jun; 69(22):6360-6378. PubMed ID: 34043342 [TBL] [Abstract][Full Text] [Related]
8. The UV-B-Induced Transcription Factor HY5 Regulated Anthocyanin Biosynthesis in Zhou J; Meng J; Zhang S; Chi R; Wang C; Wang D; Li H Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269793 [TBL] [Abstract][Full Text] [Related]
9. Low Temperature Affects Fatty Acids Profiling and Key Synthesis Genes Expression Patterns in Tian J; Tian L; Chen M; Chen Y; Wei A Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216434 [No Abstract] [Full Text] [Related]
10. Genome-Wide Identification of the Hu H; Ma L; Chen X; Fei X; He B; Luo Y; Liu Y; Wei A Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563160 [TBL] [Abstract][Full Text] [Related]
11. Transcriptomics integrated with metabolomics to characterize key pigment compounds and genes related to anthocyanin biosynthesis in Zanthoxylum bungeanum peel. Han N; Sun L; Zhang J; Yuan W; Wang C; Zhao A; Wang D Physiol Plant; 2023; 175(5):e14031. PubMed ID: 37882301 [TBL] [Abstract][Full Text] [Related]
12. Pollination promotes ABA synthesis but not sexual reproduction in the apomictic species Zanthoxylum bungeanum Maxim. Fei X; Shi Q; Lei Y; Wang S; Qi Y; Hu H; Wei A Tree Physiol; 2021 Aug; 41(8):1497-1509. PubMed ID: 33440426 [TBL] [Abstract][Full Text] [Related]
13. Role of Li Z; Tariq A; Pan K; Graciano C; Sun F; Song D; Abiodun Olatunji O PeerJ; 2020; 8():e9040. PubMed ID: 32411523 [TBL] [Abstract][Full Text] [Related]
14. Comprehensive identification of non-volatile bitter-tasting compounds in Zanthoxylum bungeanum Maxim. by untargeted metabolomics combined with sensory-guided fractionation technique. Yang Q; Mei X; Wang Z; Chen X; Zhang R; Chen Q; Kan J Food Chem; 2021 Jun; 347():129085. PubMed ID: 33493837 [TBL] [Abstract][Full Text] [Related]
15. Characterization and comparison of the pungent components in commercial Zanthoxylum bungeanum oil and Zanthoxylum schinifolium oil. Zhao ZF; Zhu RX; Zhong K; He Q; Luo AM; Gao H J Food Sci; 2013 Oct; 78(10):C1516-C1522. PubMed ID: 24106759 [TBL] [Abstract][Full Text] [Related]
16. miRNAs and their target genes regulate the antioxidant system of Zanthoxylum bungeanum under drought stress. Fei X; Li J; Kong L; Hu H; Tian J; Liu Y; Wei A Plant Physiol Biochem; 2020 May; 150():196-203. PubMed ID: 32155447 [TBL] [Abstract][Full Text] [Related]
17. Comparative metabolomics analysis of pericarp from four varieties of Cao Y; Ren M; Yang J; Guo L; Lin Y; Wu H; Wang B; Lv R; Zhang C; Gong X; Wang H Bioengineered; 2022 Jun; 13(6):14815-14826. PubMed ID: 36274249 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous Enrichment and Separation of Four Flavonoids from Zanthoxylum bungeanum Leaves by Ultrasound-Assisted Extraction and Macroporous Resins with Evaluation of Antioxidant Activities. Wu Z; Wang W; He F; Li D; Wang D J Food Sci; 2018 Aug; 83(8):2109-2118. PubMed ID: 30080245 [TBL] [Abstract][Full Text] [Related]
19. Time-series based metabolomics reveals the characteristics of the color-related metabolites during the different coloration stages of Zanthoxylum bungeanum peel. Wang C; Han F; Chen X; Zhao A; Wang D Food Res Int; 2022 May; 155():111077. PubMed ID: 35400454 [TBL] [Abstract][Full Text] [Related]
20. Genome survey of Zanthoxylum bungeanum and development of genomic-SSR markers in congeneric species. Li J; Li S; Kong L; Wang L; Wei A; Liu Y Biosci Rep; 2020 Jun; 40(6):. PubMed ID: 32558907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]