BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35873597)

  • 1. An Integrative Heterogeneous Graph Neural Network-Based Method for Multi-Labeled Drug Repurposing.
    Sadeghi S; Lu J; Ngom A
    Front Pharmacol; 2022; 13():908549. PubMed ID: 35873597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational approach to drug repurposing using graph neural networks.
    Doshi S; Chepuri SP
    Comput Biol Med; 2022 Nov; 150():105992. PubMed ID: 36228466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EGeRepDR: An enhanced genetic-based representation learning for drug repurposing using multiple biomedical sources.
    Muniyappan S; Rayan AXA; Varrieth GT
    J Biomed Inform; 2023 Nov; 147():104528. PubMed ID: 37858852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DRTerHGAT: A drug repurposing method based on the ternary heterogeneous graph attention network.
    He H; Xie J; Huang D; Zhang M; Zhao X; Ying Y; Wang J
    J Mol Graph Model; 2024 Jul; 130():108783. PubMed ID: 38677034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MGRL: Predicting Drug-Disease Associations Based on Multi-Graph Representation Learning.
    Zhao BW; You ZH; Wong L; Zhang P; Li HY; Wang L
    Front Genet; 2021; 12():657182. PubMed ID: 34054920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network.
    Pang S; Zhuang Y; Wang X; Wang F; Qiao S
    BMC Med Inform Decis Mak; 2021 Nov; 21(1):319. PubMed ID: 34789236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. REDDA: Integrating multiple biological relations to heterogeneous graph neural network for drug-disease association prediction.
    Gu Y; Zheng S; Yin Q; Jiang R; Li J
    Comput Biol Med; 2022 Nov; 150():106127. PubMed ID: 36182762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Integrative Network Science and Artificial Intelligence Drug Repurposing Approach for Muscle Atrophy in Spaceflight Microgravity.
    Manian V; Orozco-Sandoval J; Diaz-Martinez V
    Front Cell Dev Biol; 2021; 9():732370. PubMed ID: 34604234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous graph construction and HinSAGE learning from electronic medical records.
    Cho HN; Ahn I; Gwon H; Kang HJ; Kim Y; Seo H; Choi H; Kim M; Han J; Kee G; Jun TJ; Kim YH
    Sci Rep; 2022 Dec; 12(1):21152. PubMed ID: 36477457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug-protein interaction prediction.
    Xuan P; Fan M; Cui H; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug repurposing and prediction of multiple interaction types via graph embedding.
    Amiri Souri E; Chenoweth A; Karagiannis SN; Tsoka S
    BMC Bioinformatics; 2023 May; 24(1):202. PubMed ID: 37193964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An effective multi-task learning framework for drug repurposing based on graph representation learning.
    Ye S; Zhao W; Shen X; Jiang X; He T
    Methods; 2023 Oct; 218():48-56. PubMed ID: 37516260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying drug-target interactions via heterogeneous graph attention networks combined with cross-modal similarities.
    Jiang L; Sun J; Wang Y; Ning Q; Luo N; Yin M
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35224614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repurposing Non-pharmacological Interventions for Alzheimer's Diseases through Link Prediction on Biomedical Literature.
    Xiao Y; Hou Y; Zhou H; Diallo G; Fiszman M; Wolfson J; Kilicoglu H; Chen Y; Su C; Xu H; Mantyh WG; Zhang R
    medRxiv; 2023 May; ():. PubMed ID: 37292731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Task-driven knowledge graph filtering improves prioritizing drugs for repurposing.
    Ratajczak F; Joblin M; Ringsquandl M; Hildebrandt M
    BMC Bioinformatics; 2022 Mar; 23(1):84. PubMed ID: 35246025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Drug-Protein Interactions by Self-Adaptively Adjusting the Topological Structure of the Heterogeneous Network.
    Tang R; Sun C; Huang J; Li M; Wei J; Liu J
    IEEE J Biomed Health Inform; 2023 Nov; 27(11):5675-5684. PubMed ID: 37672364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of Target Genes for Drug Repurposing to Treat Skeletal Muscle Atrophy in Mice Flown in Spaceflight.
    Manian V; Orozco-Sandoval J; Diaz-Martinez V; Janwa H; Agrinsoni C
    Genes (Basel); 2022 Mar; 13(3):. PubMed ID: 35328027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ALDPI: adaptively learning importance of multi-scale topologies and multi-modality similarities for drug-protein interaction prediction.
    Hu K; Cui H; Zhang T; Sun C; Xuan P
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35108362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AntiViralDL: Computational Antiviral Drug Repurposing Using Graph Neural Network and Self-Supervised Learning.
    Zhang P; Hu X; Li G; Deng L
    IEEE J Biomed Health Inform; 2023 Nov; PP():. PubMed ID: 37922162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SAGESDA: Multi-GraphSAGE networks for predicting SnoRNA-disease associations.
    Momanyi BM; Zhou YW; Grace-Mercure BK; Temesgen SA; Basharat A; Ning L; Tang L; Gao H; Lin H; Tang H
    Curr Res Struct Biol; 2024; 7():100122. PubMed ID: 38188542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.