These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35873738)

  • 1. Quasi-static fracture analysis by coupled three-dimensional peridynamics and high order one-dimensional finite elements based on local elasticity.
    Pagani A; Enea M; Carrera E
    Int J Numer Methods Eng; 2022 Feb; 123(4):1098-1113. PubMed ID: 35873738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Hybrid Finite Volume and Extended Finite Element Method for Hydraulic Fracturing with Cohesive Crack Propagation in Quasi-Brittle Materials.
    Liu C; Shen Z; Gan L; Jin T; Zhang H; Liu D
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30304867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermo-Mechanical Coupling Model of Bond-Based Peridynamics for Quasi-Brittle Materials.
    Zhang H; Liu L; Lai X; Mei H; Liu X
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brittle fracture in viscoelastic materials as a pattern-formation process.
    Fleck M; Pilipenko D; Spatschek R; Brener EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046213. PubMed ID: 21599276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved peridynamic model and its application to crack propagation in rocks.
    Zhou L; Zhu S; Zhu Z; Yu S; Xie X
    R Soc Open Sci; 2022 Oct; 9(10):221013. PubMed ID: 36277834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue damage assessment of complex railway turnout crossings via Peridynamics-based digital twin.
    Hamarat M; Papaelias M; Kaewunruen S
    Sci Rep; 2022 Aug; 12(1):14377. PubMed ID: 35999353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unified one-dimensional finite element for the analysis of hyperelastic soft materials and structures.
    Pagani A; Carrera E
    Mech Adv Mat Struct; 2023; 30(2):342-355. PubMed ID: 36798852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quasi-brittle continuum damage finite element model of the human proximal femur based on element deletion.
    Hambli R
    Med Biol Eng Comput; 2013 Feb; 51(1-2):219-31. PubMed ID: 23179412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Static and free-vibration analyses of dental prosthesis and atherosclerotic human artery by refined finite element models.
    Carrera E; Guarnera D; Pagani A
    Biomech Model Mechanobiol; 2018 Apr; 17(2):301-317. PubMed ID: 28905122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete analytical solutions for double cantilever beam specimens with bi-linear quasi-brittle and brittle interfaces.
    Škec L; Alfano G; Jelenić G
    Int J Fract; 2019; 215(1):1-37. PubMed ID: 30872889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling of Granular Fracture in Polycrystalline Materials Using Ordinary State-Based Peridynamics.
    Zhu N; De Meo D; Oterkus E
    Materials (Basel); 2016 Dec; 9(12):. PubMed ID: 28774099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Network Model for Coupling of Fracture and Mass Transport in Quasi-Brittle Geomaterials.
    Grassl P; Bolander J
    Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Traction-Associated Peridynamic Motion Equation and Its Verification in the Plane Stress and Fracture Problems.
    Yu M; Zhou Z; Huang Z
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy approach to brittle fracture in strain-gradient modelling.
    Placidi L; Barchiesi E
    Proc Math Phys Eng Sci; 2018 Feb; 474(2210):20170878. PubMed ID: 29507523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element prediction of proximal femur fracture pattern based on orthotropic behaviour law coupled to quasi-brittle damage.
    Hambli R; Bettamer A; Allaoui S
    Med Eng Phys; 2012 Mar; 34(2):202-10. PubMed ID: 21824797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling Brittle Fractures in Epoxy Nanocomposites Using Extended Finite Element and Cohesive Zone Surface Methods.
    Biswakarma JJS; Cruz DA; Bain ED; Dennis JM; Andzelm JW; Lustig SR
    Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peridynamics Model with Surface Correction Near Insulated Cracks for Transient Heat Conduction in Functionally Graded Materials.
    Tan Y; Liu Q; Zhang L; Liu L; Lai X
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crack Propagation Calculations for Optical Fibers under Static Bending and Tensile Loads Using Continuum Damage Mechanics.
    Chen Y; Cui Y; Gong W
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29140284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advancements on the phase field approach to brittle fracture for heterogeneous materials and structures.
    Carollo V; Guillén-Hernández T; Reinoso J; Paggi M
    Adv Model Simul Eng Sci; 2018; 5(1):8. PubMed ID: 31259145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational framework for crack propagation in spatially heterogeneous materials.
    Lewandowski K; Kaczmarczyk Ł; Athanasiadis I; Marshall JF; Pearce CJ
    Philos Trans A Math Phys Eng Sci; 2021 Aug; 379(2203):20200291. PubMed ID: 34148414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.