BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 35874041)

  • 1. Functionally graded additive manufacturing for orthopedic applications.
    Rouf S; Malik A; Raina A; Irfan Ul Haq M; Naveed N; Zolfagharian A; Bodaghi M
    J Orthop; 2022; 33():70-80. PubMed ID: 35874041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tribo-corrosive behavior of additive manufactured parts for orthopaedic applications.
    Malik A; Rouf S; Ul Haq MI; Raina A; Valerga Puerta AP; Sagbas B; Ruggiero A
    J Orthop; 2022; 34():49-60. PubMed ID: 36016865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionally graded materials for orthopedic applications - an update on design and manufacturing.
    Sola A; Bellucci D; Cannillo V
    Biotechnol Adv; 2016; 34(5):504-531. PubMed ID: 26757264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additively manufactured functionally graded biodegradable porous iron.
    Li Y; Jahr H; Pavanram P; Bobbert FSL; Paggi U; Zhang XY; Pouran B; Leeflang MA; Weinans H; Zhou J; Zadpoor AA
    Acta Biomater; 2019 Sep; 96():646-661. PubMed ID: 31302295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials.
    Zhang XY; Fang G; Leeflang S; Zadpoor AA; Zhou J
    Acta Biomater; 2019 Jan; 84():437-452. PubMed ID: 30537537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects.
    Meng M; Wang J; Huang H; Liu X; Zhang J; Li Z
    J Orthop Translat; 2023 Sep; 42():94-112. PubMed ID: 37675040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ceramic-Based 4D Components: Additive Manufacturing (AM) of Ceramic-Based Functionally Graded Materials (FGM) by Thermoplastic 3D Printing (T3DP).
    Scheithauer U; Weingarten S; Johne R; Schwarzer E; Abel J; Richter HJ; Moritz T; Michaelis A
    Materials (Basel); 2017 Nov; 10(12):. PubMed ID: 29182541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printed patient-specific applications in orthopedics.
    Wong KC
    Orthop Res Rev; 2016; 8():57-66. PubMed ID: 30774470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corrosion fatigue behavior of additively manufactured biodegradable porous zinc.
    Li Y; Li W; Bobbert FSL; Lietaert K; Dong JH; Leeflang MA; Zhou J; Zadpoor AA
    Acta Biomater; 2020 Apr; 106():439-449. PubMed ID: 32036018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Review on Design and Mechanical Properties of Additively Manufactured NiTi Implants for Orthopedic Applications.
    Zhang Y; Attarilar S; Wang L; Lu W; Yang J; Fu Y
    Int J Bioprint; 2021; 7(2):340. PubMed ID: 33997434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LPBF Manufactured Functionally Graded Lattice Structures Obtained by Graded Density and Hybrid Poisson's Ratio.
    Abdelaal O; Hengsbach F; Schaper M; Hoyer KP
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Review of the Applications of Additive Manufacturing Technologies Used to Fabricate Metals in Implant Dentistry.
    Revilla-León M; Sadeghpour M; Özcan M
    J Prosthodont; 2020 Aug; 29(7):579-593. PubMed ID: 32548890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Material Anisotropy in Additively Manufactured Polymers and Polymer Composites: A Review.
    Zohdi N; Yang RC
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs.
    Sing SL; An J; Yeong WY; Wiria FE
    J Orthop Res; 2016 Mar; 34(3):369-85. PubMed ID: 26488900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous metal implants: processing, properties, and challenges.
    Bandyopadhyay A; Mitra I; Avila JD; Upadhyayula M; Bose S
    Int J Extrem Manuf; 2023 Sep; 5(3):032014. PubMed ID: 37476350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive manufacturing of biodegradable metals: Current research status and future perspectives.
    Qin Y; Wen P; Guo H; Xia D; Zheng Y; Jauer L; Poprawe R; Voshage M; Schleifenbaum JH
    Acta Biomater; 2019 Oct; 98():3-22. PubMed ID: 31029830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review on Additive Manufacturing of Functional Gradient Piezoceramic.
    Sotov A; Kantyukov A; Popovich A; Sufiiarov V
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical and in vitro biological properties of uniform and graded Cobalt-chrome lattice structures in orthopedic implants.
    Pagani S; Liverani E; Giavaresi G; De Luca A; Belvedere C; Fortunato A; Leardini A; Fini M; Tomesani L; Caravaggi P
    J Biomed Mater Res B Appl Biomater; 2021 Dec; 109(12):2091-2103. PubMed ID: 33964120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution.
    Putra NE; Mirzaali MJ; Apachitei I; Zhou J; Zadpoor AA
    Acta Biomater; 2020 Jun; 109():1-20. PubMed ID: 32268239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additive manufacturing of Zn-Mg alloy porous scaffolds with enhanced osseointegration: In vitro and in vivo studies.
    Qin Y; Liu A; Guo H; Shen Y; Wen P; Lin H; Xia D; Voshage M; Tian Y; Zheng Y
    Acta Biomater; 2022 Jun; 145():403-415. PubMed ID: 35381400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.