These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 35874052)

  • 1. Struvite precipitation within wastewater treatment: A problem or a circular economy opportunity?
    Achilleos P; Roberts KR; Williams ID
    Heliyon; 2022 Jul; 8(7):e09862. PubMed ID: 35874052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solutions to a combined problem of excessive hydrogen sulfide in biogas and struvite scaling.
    Charles W; Cord-Ruwisch R; Ho G; Costa M; Spencer P
    Water Sci Technol; 2006; 53(6):203-10. PubMed ID: 16749459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor.
    Rahaman MS; Mavinic DS; Meikleham A; Ellis N
    Water Res; 2014 Mar; 51():1-10. PubMed ID: 24384559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sludge management modeling to enhance P-recovery as struvite in wastewater treatment plants.
    Martí N; Barat R; Seco A; Pastor L; Bouzas A
    J Environ Manage; 2017 Jul; 196():340-346. PubMed ID: 28324850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams.
    Münch EV; Barr K
    Water Res; 2001 Jan; 35(1):151-9. PubMed ID: 11257869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the recovery of phosphorus from struvite precipitation in supernatant line from anaerobic digesters of sludge.
    Xavier LD; Cammarota MC; Yokoyama L; Volschan Junior I
    Water Sci Technol; 2014; 69(7):1546-51. PubMed ID: 24718349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An economic evaluation of phosphorus recovery as struvite from digester supernatant.
    Shu L; Schneider P; Jegatheesan V; Johnson J
    Bioresour Technol; 2006 Nov; 97(17):2211-6. PubMed ID: 16364632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissolving the high-cost with acidity: A happy encounter between fluidized struvite crystallization and wastewater from activated carbon manufacture.
    Ye X; Chen M; Wang W; Shen J; Wu J; Huang W; Xiao L; Lin X; Ye ZL; Chen S
    Water Res; 2021 Jan; 188():116521. PubMed ID: 33099265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can wastewater feed cities? Determining the feasibility and environmental burdens of struvite recovery and reuse for urban regions.
    Rufí-Salís M; Brunnhofer N; Petit-Boix A; Gabarrell X; Guisasola A; Villalba G
    Sci Total Environ; 2020 Oct; 737():139783. PubMed ID: 32516664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass Balance Model for Sustainable Phosphorus Recovery in a US Wastewater Treatment Plant.
    Venkatesan AK; Hamdan AH; Chavez VM; Brown JD; Halden RU
    J Environ Qual; 2016 Jan; 45(1):84-9. PubMed ID: 26828163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trends in the recovery of phosphorus in bioavailable forms from wastewater.
    Melia PM; Cundy AB; Sohi SP; Hooda PS; Busquets R
    Chemosphere; 2017 Nov; 186():381-395. PubMed ID: 28802130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of supersaturation ratio on phosphorus recovery from synthetic anaerobic digester supernatant through a struvite crystallization fluidized bed reactor.
    Ghosh S; Lobanov S; Lo VK
    Environ Technol; 2019 Jun; 40(15):2000-2010. PubMed ID: 29388510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the potential of sludge dewatering liquors to recover nutrients as struvite biominerals.
    Simoes F; Colston R; Rosa-Fernandes C; Vale P; Stephenson T; Soares A
    Environ Sci Ecotechnol; 2020 Jul; 3():100052. PubMed ID: 36159601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing struvite precipitation in a pilot-scale fluidized bed crystallizer.
    Iqbal M; Bhuiyan H; Mavinic DS
    Environ Technol; 2008 Nov; 29(11):1157-67. PubMed ID: 18975848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorus recovery from wastewater through struvite formation in fluidized bed reactors: a sustainable approach.
    Bhuiyan MI; Mavinic DS; Koch FA
    Water Sci Technol; 2008; 57(2):175-81. PubMed ID: 18235168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus recovery by struvite crystallization in WWTPs: influence of the sludge treatment line operation.
    Martí N; Pastor L; Bouzas A; Ferrer J; Seco A
    Water Res; 2010 Apr; 44(7):2371-9. PubMed ID: 20089291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of phosphate and ammonium nitrogen as struvite from aqueous solutions using a magnesium-air cell system.
    Wu X; Xie R; Ding J; Dai L; Ke X; Liu Y; Chen R; Qian Q; Ding R; Liu J; Van der Bruggen B
    Sci Total Environ; 2022 May; 819():152006. PubMed ID: 34856253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants.
    Pastor L; Marti N; Bouzas A; Seco A
    Bioresour Technol; 2008 Jul; 99(11):4817-24. PubMed ID: 17976981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus recovery from source-diverted blackwater through struvite precipitation.
    Sun H; Mohammed AN; Liu Y
    Sci Total Environ; 2020 Nov; 743():140747. PubMed ID: 32663687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The determination of fertiliser quality of the formed struvite from a WWTP.
    González C; Fernández B; Molina F; Camargo-Valero MA; Peláez C
    Water Sci Technol; 2021 Jun; 83(12):3041-3053. PubMed ID: 34185698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.