These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35874102)

  • 1. Regional representation of wind stakeholders' end-of-life behaviors and their impact on wind blade circularity.
    Walzberg J; Cooperman A; Watts L; Eberle AL; Carpenter A; Heath GA
    iScience; 2022 Aug; 25(8):104734. PubMed ID: 35874102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mini-review of end-of-life management of wind turbines: Current practices and closing the circular economy gap.
    Woo SM; Whale J
    Waste Manag Res; 2022 Dec; 40(12):1730-1744. PubMed ID: 35765772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circular economy performance and carbon footprint of wind turbine blade waste management alternatives.
    Diez-Cañamero B; Mendoza JMF
    Waste Manag; 2023 Jun; 164():94-105. PubMed ID: 37037101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life cycle assessment of the use of decommissioned wind blades in second life applications.
    Nagle AJ; Mullally G; Leahy PG; Dunphy NP
    J Environ Manage; 2022 Jan; 302(Pt A):113994. PubMed ID: 34741945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Offshore and onshore wind turbine blade waste material forecast at a regional level in Europe until 2050.
    Lichtenegger G; Rentizelas AA; Trivyza N; Siegl S
    Waste Manag; 2020 Apr; 106():120-131. PubMed ID: 32203899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specification of Environmental Consequences of the Life Cycle of Selected Post-Production Waste of Wind Power Plants Blades.
    Piotrowska K; Piasecka I
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental impact and waste recycling technologies for modern wind turbines: An overview.
    Rathore N; Panwar NL
    Waste Manag Res; 2023 Apr; 41(4):744-759. PubMed ID: 36382768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustainable End-of-Life Management of Wind Turbine Blades: Overview of Current and Coming Solutions.
    Mishnaevsky L
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33673684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using life cycle assessment to address stakeholders' potential for improving municipal solid waste management.
    de Andrade Junior MAU; Zanghelini GM; Soares SR
    Waste Manag Res; 2017 May; 35(5):541-550. PubMed ID: 28462678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling of both resin and fibre from wind turbine blade waste via small molecule-assisted dissolution.
    Muzyka R; Sobek S; Korytkowska-Wałach A; Drewniak Ł; Sajdak M
    Sci Rep; 2023 Jun; 13(1):9270. PubMed ID: 37286809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of glass and carbon fiber reinforced plastic waste from end-of-life rotor blades of wind power plants within the European Union.
    Sommer V; Stockschläder J; Walther G
    Waste Manag; 2020 Sep; 115():83-94. PubMed ID: 32731137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control the System and Environment of Post-Production Wind Turbine Blade Waste Using Life Cycle Models. Part 1. Environmental Transformation Models.
    Piasecka I; Bałdowska-Witos P; Flizikowski J; Piotrowska K; Tomporowski A
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32824077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wind turbine blade wastes and the environmental impacts in Canada.
    Heng H; Meng F; McKechnie J
    Waste Manag; 2021 Sep; 133():59-70. PubMed ID: 34385121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-criteria decision analysis (MCDA) method for assessing the sustainability of end-of-life alternatives for waste plastics: A case study of Norway.
    Deshpande PC; Skaar C; Brattebø H; Fet AM
    Sci Total Environ; 2020 Jun; 719():137353. PubMed ID: 32143095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wind turbine blade waste in 2050.
    Liu P; Barlow CY
    Waste Manag; 2017 Apr; 62():229-240. PubMed ID: 28215972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiobjective Optimization of Composite Wind Turbine Blade.
    Jureczko M; Mrówka M
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of national policies for Circular Economy transitions: Modelling and simulating the Brazilian industrial agreement for electrical and electronic equipment.
    Guzzo D; Rodrigues VP; Pigosso DCA; Mascarenhas J
    Waste Manag; 2022 Feb; 138():59-74. PubMed ID: 34871882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digitalization as driver to achieve circularity in the agroindustry: A SWOT-ANP-ADAM approach.
    Agnusdei L; Krstić M; Palmi P; Miglietta PP
    Sci Total Environ; 2023 Jul; 882():163441. PubMed ID: 37080306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circular economy practices within energy and waste management sectors of India: A meta-analysis.
    Priyadarshini P; Abhilash PC
    Bioresour Technol; 2020 May; 304():123018. PubMed ID: 32087547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsustainable Wind Turbine Blade Disposal Practices in the United States.
    Ramirez-Tejeda K; Turcotte DA; Pike S
    New Solut; 2017 Feb; 26(4):581-598. PubMed ID: 27794074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.