These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35874143)

  • 1. Influence of source-detector separation on diffuse correlation spectroscopy measurements of cerebral blood flow with a multilayered analytical model.
    Zhao H; Buckley EM
    Neurophotonics; 2022 Jul; 9(3):035002. PubMed ID: 35874143
    [No Abstract]   [Full Text] [Related]  

  • 2. Influence of oversimplifying the head anatomy on cerebral blood flow measurements with diffuse correlation spectroscopy.
    Zhao H; Buckley EM
    Neurophotonics; 2023 Jan; 10(1):015010. PubMed ID: 37006324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy of diffuse correlation spectroscopy measurements of cerebral blood flow when using a three-layer analytical model.
    Zhao H; Sathialingam E; Buckley EM
    Biomed Opt Express; 2021 Nov; 12(11):7149-7161. PubMed ID: 34858706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of blood flow index in diffuse correlation spectroscopy using a robust deep learning method.
    Wang Q; Pan M; Zang Z; Li DD
    J Biomed Opt; 2024 Jan; 29(1):015004. PubMed ID: 38283935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of diffuse correlation spectroscopy analytical models for measuring cerebral blood flow in adults.
    Zhao H; Sathialingam E; Cowdrick KR; Urner T; Lee SY; Bai S; Akbik F; Samuels OB; Kandiah P; Sadan O; Buckley EM
    J Biomed Opt; 2023 Dec; 28(12):126005. PubMed ID: 38107767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing the performance potential of speckle contrast optical spectroscopy and diffuse correlation spectroscopy for cerebral blood flow monitoring using Monte Carlo simulations in realistic head geometries.
    Robinson MB; Cheng TY; Renna M; Wu MM; Kim B; Cheng X; Boas DA; Franceschini MA; Carp SA
    Neurophotonics; 2024 Jan; 11(1):015004. PubMed ID: 38282721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved accuracy of cerebral blood flow quantification in the presence of systemic physiology cross-talk using multi-layer Monte Carlo modeling.
    Wu MM; Chan ST; Mazumder D; Tamborini D; Stephens KA; Deng B; Farzam P; Chu JY; Franceschini MA; Qu JZ; Carp SA
    Neurophotonics; 2021 Jan; 8(1):015001. PubMed ID: 33437846
    [No Abstract]   [Full Text] [Related]  

  • 8. Optimizing a two-layer method for hybrid diffuse correlation spectroscopy and frequency-domain diffuse optical spectroscopy cerebral measurements in adults.
    Forti RM; Martins GG; Baker WB; Mesquita RC
    Neurophotonics; 2023 Apr; 10(2):025008. PubMed ID: 37228905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of time domain diffuse correlation spectroscopy parameters for measuring brain blood flow.
    Mazumder D; Wu MM; Ozana N; Tamborini D; Franceschini MA; Carp SA
    Neurophotonics; 2021 Jul; 8(3):035005. PubMed ID: 34395719
    [No Abstract]   [Full Text] [Related]  

  • 10. Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light.
    Carp S; Tamborini D; Mazumder D; Wu KC; Robinson M; Stephens K; Shatrovoy O; Lue N; Ozana N; Blackwell M; Franceschini MA
    J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32996299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Monte Carlo-wave model to simulate time domain diffuse correlation spectroscopy measurements from first principles.
    Cheng X; Chen H; Sie EJ; Marsili F; Boas DA
    J Biomed Opt; 2022 Feb; 27(8):. PubMed ID: 35199501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-domain diffuse correlation spectroscopy at large source detector separation for cerebral blood flow recovery.
    Mogharari N; Wojtkiewicz S; Borycki D; Liebert A; Kacprzak M
    Biomed Opt Express; 2024 Jul; 15(7):4330-4344. PubMed ID: 39022555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-layer analytical model for estimation of layer thickness and flow using Diffuse Correlation Spectroscopy.
    Wu J; Tabassum S; Brown WL; Wood S; Yang J; Kainerstorfer JM
    PLoS One; 2022; 17(9):e0274258. PubMed ID: 36112634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interferometric diffuse correlation spectroscopy improves measurements at long source-detector separation and low photon count rate.
    Robinson M; Boas D; Sakadžic S; Franceschini MA; Carp S
    J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 33000571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of diffuse correlation spectroscopy and frequency-domain near-infrared spectroscopy in monitoring cerebral hemodynamics during hypothermic circulatory arrests.
    Zavriyev AI; Kaya K; Farzam P; Farzam PY; Sunwoo J; Jassar AS; Sundt TM; Carp SA; Franceschini MA; Qu JZ
    JTCVS Tech; 2021 Jun; 7():161-177. PubMed ID: 34318236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia.
    Selb J; Boas DA; Chan ST; Evans KC; Buckley EM; Carp SA
    Neurophotonics; 2014 Jul; 1(1):. PubMed ID: 25453036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Portable, high speed blood flow measurements enabled by long wavelength, interferometric diffuse correlation spectroscopy (LW-iDCS).
    Robinson MB; Renna M; Ozana N; Martin AN; Otic N; Carp SA; Franceschini MA
    Sci Rep; 2023 May; 13(1):8803. PubMed ID: 37258644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure modulation algorithm to separate cerebral hemodynamic signals from extracerebral artifacts.
    Baker WB; Parthasarathy AB; Ko TS; Busch DR; Abramson K; Tzeng SY; Mesquita RC; Durduran T; Greenberg JH; Kung DK; Yodh AG
    Neurophotonics; 2015 Jul; 2(3):035004. PubMed ID: 26301255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small separation diffuse correlation spectroscopy for measurement of cerebral blood flow in rodents.
    Sathialingam E; Lee SY; Sanders B; Park J; McCracken CE; Bryan L; Buckley EM
    Biomed Opt Express; 2018 Nov; 9(11):5719-5734. PubMed ID: 30460158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing diffuse correlation spectroscopy pulsatile cerebral blood flow signal with near-infrared spectroscopy photoplethysmography.
    Wu KC; Martin A; Renna M; Robinson M; Ozana N; Carp SA; Franceschini MA
    Neurophotonics; 2023 Jul; 10(3):035008. PubMed ID: 37680339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.