These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35874163)

  • 1. Inter-Trial Formant Variability in Speech Production Is Actively Controlled but Does Not Affect Subsequent Adaptation to a Predictable Formant Perturbation.
    Wang H; Max L
    Front Hum Neurosci; 2022; 16():890065. PubMed ID: 35874163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speech auditory-motor adaptation to formant-shifted feedback lacks an explicit component: Reduced adaptation in adults who stutter reflects limitations in implicit sensorimotor learning.
    Kim KS; Max L
    Eur J Neurosci; 2021 May; 53(9):3093-3108. PubMed ID: 33675539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perturbing the consistency of auditory feedback in speech.
    Nault DR; Mitsuya T; Purcell DW; Munhall KG
    Front Hum Neurosci; 2022; 16():905365. PubMed ID: 36092651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does pre-speech auditory modulation reflect processes related to feedback monitoring or speech movement planning?
    Li JJ; Daliri A; Kim KS; Max L
    bioRxiv; 2024 Jul; ():. PubMed ID: 39026879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speech compensation responses and sensorimotor adaptation to formant feedback perturbations.
    Raharjo I; Kothare H; Nagarajan SS; Houde JF
    J Acoust Soc Am; 2021 Feb; 149(2):1147. PubMed ID: 33639824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of speech motor adaptation with repetitive transcranial magnetic stimulation of the articulatory representation in primary motor cortex.
    Tang DL; McDaniel A; Watkins KE
    Cortex; 2021 Dec; 145():115-130. PubMed ID: 34717269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feedback delays eliminate auditory-motor learning in speech production.
    Max L; Maffett DG
    Neurosci Lett; 2015 Mar; 591():25-29. PubMed ID: 25676810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased speech contrast induced by sensorimotor adaptation to a nonuniform auditory perturbation.
    Parrell B; Niziolek CA
    J Neurophysiol; 2021 Feb; 125(2):638-647. PubMed ID: 33356887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensorimotor adaptation of speech depends on the direction of auditory feedback alteration.
    Kothare H; Raharjo I; Ramanarayanan V; Ranasinghe K; Parrell B; Johnson K; Houde JF; Nagarajan SS
    J Acoust Soc Am; 2020 Dec; 148(6):3682. PubMed ID: 33379892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occlusion effect on compensatory formant production and voice amplitude in response to real-time perturbation.
    Mitsuya T; Purcell DW
    J Acoust Soc Am; 2016 Dec; 140(6):4017. PubMed ID: 28040002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive neurostimulation of left ventral motor cortex enhances sensorimotor adaptation in speech production.
    Scott TL; Haenchen L; Daliri A; Chartove J; Guenther FH; Perrachione TK
    Brain Lang; 2020 Oct; 209():104840. PubMed ID: 32738502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive auditory feedback control of the production of formant trajectories in the Mandarin triphthong /iau/ and its pattern of generalization.
    Cai S; Ghosh SS; Guenther FH; Perkell JS
    J Acoust Soc Am; 2010 Oct; 128(4):2033-48. PubMed ID: 20968374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensorimotor adaptation to feedback perturbations of vowel acoustics and its relation to perception.
    Villacorta VM; Perkell JS; Guenther FH
    J Acoust Soc Am; 2007 Oct; 122(4):2306-19. PubMed ID: 17902866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Movement variability can be modulated in speech production.
    Tang DL; Parrell B; Niziolek CA
    J Neurophysiol; 2022 Dec; 128(6):1469-1482. PubMed ID: 36350054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensorimotor control of vocal pitch and formant frequencies in Parkinson's disease.
    Mollaei F; Shiller DM; Baum SR; Gracco VL
    Brain Res; 2016 Sep; 1646():269-277. PubMed ID: 27288701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Focal manipulations of formant trajectories reveal a role of auditory feedback in the online control of both within-syllable and between-syllable speech timing.
    Cai S; Ghosh SS; Guenther FH; Perkell JS
    J Neurosci; 2011 Nov; 31(45):16483-90. PubMed ID: 22072698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses to Auditory Feedback Manipulations in Speech May Be Affected by Previous Exposure to Auditory Errors.
    Niziolek CA; Parrell B
    J Speech Lang Hear Res; 2021 Jun; 64(6S):2169-2181. PubMed ID: 33705674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive control of vowel formant frequency: evidence from real-time formant manipulation.
    Purcell DW; Munhall KG
    J Acoust Soc Am; 2006 Aug; 120(2):966-77. PubMed ID: 16938984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pediatric Responses to Fundamental and Formant Frequency Altered Auditory Feedback: A Scoping Review.
    Coughler C; Quinn de Launay KL; Purcell DW; Oram Cardy J; Beal DS
    Front Hum Neurosci; 2022; 16():858863. PubMed ID: 35664350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of auditory-motor learning in response to formant perturbation as a function of delayed auditory feedback.
    Mitsuya T; Munhall KG; Purcell DW
    J Acoust Soc Am; 2017 Apr; 141(4):2758. PubMed ID: 28464659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.