These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 35874232)
1. Additive Manufacturing of Viscoelastic Polyacrylamide Substrates for Mechanosensing Studies. Protick FK; Amit SK; Amar K; Nath SD; Akand R; Davis VA; Nilufar S; Chowdhury F ACS Omega; 2022 Jul; 7(28):24384-24395. PubMed ID: 35874232 [TBL] [Abstract][Full Text] [Related]
2. Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Charrier EE; Pogoda K; Wells RG; Janmey PA Nat Commun; 2018 Jan; 9(1):449. PubMed ID: 29386514 [TBL] [Abstract][Full Text] [Related]
3. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties. Bootsma K; Fitzgerald MM; Free B; Dimbath E; Conjerti J; Reese G; Konkolewicz D; Berberich JA; Sparks JL J Mech Behav Biomed Mater; 2017 Jun; 70():84-94. PubMed ID: 27492734 [TBL] [Abstract][Full Text] [Related]
4. A Novel Method to Make Polyacrylamide Gels with Mechanical Properties Resembling those of Biological Tissues. Pogoda K; Charrier EE; Janmey PA Bio Protoc; 2021 Aug; 11(16):e4131. PubMed ID: 34541049 [TBL] [Abstract][Full Text] [Related]
5. Micro-Mechanical Viscoelastic Properties of Crosslinked Hydrogels Using the Nano-Epsilon Dot Method. Mattei G; Cacopardo L; Ahluwalia A Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28767075 [TBL] [Abstract][Full Text] [Related]
6. Biomembrane-mimicking lipid bilayer system as a mechanically tunable cell substrate. Lautscham LA; Lin CY; Auernheimer V; Naumann CA; Goldmann WH; Fabry B Biomaterials; 2014 Mar; 35(10):3198-207. PubMed ID: 24439398 [TBL] [Abstract][Full Text] [Related]
7. Influence of Inherent Mechanophenotype on Competitive Cellular Adherence. Shah MK; Garcia-Pak IH; Darling EM Ann Biomed Eng; 2017 Aug; 45(8):2036-2047. PubMed ID: 28447179 [TBL] [Abstract][Full Text] [Related]
8. Opposite responses of normal hepatocytes and hepatocellular carcinoma cells to substrate viscoelasticity. Mandal K; Gong Z; Rylander A; Shenoy VB; Janmey PA Biomater Sci; 2020 Mar; 8(5):1316-1328. PubMed ID: 31903466 [TBL] [Abstract][Full Text] [Related]
9. Viscoelastic substrate decouples cellular traction force from other related phenotypes. Dwivedi N; Das S; Bellare J; Majumder A Biochem Biophys Res Commun; 2021 Mar; 543():38-44. PubMed ID: 33508771 [TBL] [Abstract][Full Text] [Related]
10. Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation. Mijailovic AS; Qing B; Fortunato D; Van Vliet KJ Acta Biomater; 2018 Apr; 71():388-397. PubMed ID: 29477455 [TBL] [Abstract][Full Text] [Related]
11. Combined atomic force microscopy (AFM) and traction force microscopy (TFM) reveals a correlation between viscoelastic material properties and contractile prestress of living cells. Schierbaum N; Rheinlaender J; Schäffer TE Soft Matter; 2019 Feb; 15(8):1721-1729. PubMed ID: 30657157 [TBL] [Abstract][Full Text] [Related]
12. A novel method to make viscoelastic polyacrylamide gels for cell culture and traction force microscopy. Charrier EE; Pogoda K; Li R; Park CY; Fredberg JJ; Janmey PA APL Bioeng; 2020 Sep; 4(3):036104. PubMed ID: 32666015 [TBL] [Abstract][Full Text] [Related]
13. Stereolithography: A new method for processing dental ceramics by additive computer-aided manufacturing. Dehurtevent M; Robberecht L; Hornez JC; Thuault A; Deveaux E; Béhin P Dent Mater; 2017 May; 33(5):477-485. PubMed ID: 28318544 [TBL] [Abstract][Full Text] [Related]
14. Ultrasound characterization of the viscoelastic properties of additively manufactured photopolymer materials. Gattin M; Bochud N; Rosi G; Grossman Q; Ruffoni D; Naili S J Acoust Soc Am; 2022 Sep; 152(3):1901. PubMed ID: 36182322 [TBL] [Abstract][Full Text] [Related]
15. Compliant Substrates Enhance Macrophage Cytokine Release and NLRP3 Inflammasome Formation During Their Pro-Inflammatory Response. Escolano JC; Taubenberger AV; Abuhattum S; Schweitzer C; Farrukh A; Del Campo A; Bryant CE; Guck J Front Cell Dev Biol; 2021; 9():639815. PubMed ID: 33855019 [TBL] [Abstract][Full Text] [Related]
16. Age-dependent viscoelastic characterization of rat brain cortex. Xue B; Wen X; Kuwar R; Sun D; Zhang N Brain Multiphys; 2022; 3():. PubMed ID: 36532890 [TBL] [Abstract][Full Text] [Related]
17. The effect of time-dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells. Cameron AR; Frith JE; Gomez GA; Yap AS; Cooper-White JJ Biomaterials; 2014 Feb; 35(6):1857-68. PubMed ID: 24331708 [TBL] [Abstract][Full Text] [Related]
18. Reprogramming cardiomyocyte mechanosensing by crosstalk between integrins and hyaluronic acid receptors. Chopra A; Lin V; McCollough A; Atzet S; Prestwich GD; Wechsler AS; Murray ME; Oake SA; Kresh JY; Janmey PA J Biomech; 2012 Mar; 45(5):824-31. PubMed ID: 22196970 [TBL] [Abstract][Full Text] [Related]