BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35874462)

  • 1. Carbon-Supported Bimetallic Ruthenium-Iridium Catalysts for Selective and Stable Hydrodebromination of Dibromomethane.
    Saadun AJ; Mitchell S; Bonchev H; Pérez-Ramírez J
    ChemCatChem; 2022 Jan; 14(2):e202101494. PubMed ID: 35874462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclearity and Host Effects of Carbon-Supported Platinum Catalysts for Dibromomethane Hydrodebromination.
    Saadun AJ; Kaiser SK; Ruiz-Ferrando A; Pablo-García S; Büchele S; Fako E; López N; Pérez-Ramírez J
    Small; 2021 Apr; 17(16):e2005234. PubMed ID: 33464715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Influence of High-Energy Faceted TiO
    Wasantwisut S; Xiao Y; Feng P; Gilliard-Abdul-Aziz KL
    Chem Asian J; 2022 Feb; 17(4):e202101253. PubMed ID: 34936730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Support Induced Effects on the Ir Nanoparticles Activity, Selectivity and Stability Performance under CO
    Nikolaraki E; Goula G; Panagiotopoulou P; Taylor MJ; Kousi K; Kyriakou G; Kondarides DI; Lambert RM; Yentekakis IV
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of carbon-supported sub-2 nanometer bimetallic catalysts by strong metal-sulfur interaction.
    Xu SL; Shen SC; Zhao S; Ding YW; Chu SQ; Chen P; Lin Y; Liang HW
    Chem Sci; 2020 Jul; 11(30):7933-7939. PubMed ID: 34094162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface.
    Muratsugu S; Kityakarn S; Wang F; Ishiguro N; Kamachi T; Yoshizawa K; Sekizawa O; Uruga T; Tada M
    Phys Chem Chem Phys; 2015 Oct; 17(38):24791-802. PubMed ID: 26344789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable yolk-structured catalysts towards aqueous levulinic acid hydrogenation within a single Ru nanoparticle anchored inside the mesoporous shell of hollow carbon spheres.
    Yang Y; Zhang S; Gu L; Shao S; Li W; Zeng D; Yang F; Hao S
    J Colloid Interface Sci; 2020 Sep; 576():394-403. PubMed ID: 32460100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic Strategies of Supported Pd-Based Bimetallic Catalysts for Selective Semi-Hydrogenation of Acetylene: A Review and Perspectives.
    Cao X; Jang BW; Hu J; Wang L; Zhang S
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of silica-supported Ir and Ir-M (M = Pt, Pd, Au) catalysts for low-temperature hydrodechlorination of tetrachloromethane.
    Bonarowska M; Matus K; Śrębowata A; Sá J
    Sci Total Environ; 2018 Dec; 644():287-297. PubMed ID: 29981976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular metal catalysts on supports: organometallic chemistry meets surface science.
    Serna P; Gates BC
    Acc Chem Res; 2014 Aug; 47(8):2612-20. PubMed ID: 25036259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Sulfuric Acid on the Performance of Ruthenium-based Catalysts in the Liquid-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone.
    Ftouni J; Genuino HC; Muñoz-Murillo A; Bruijnincx PCA; Weckhuysen BM
    ChemSusChem; 2017 Jul; 10(14):2891-2896. PubMed ID: 28603841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon-supported palladium and ruthenium nanoparticles: application as catalysts in alcohol oxidation, cross-coupling and hydrogenation reactions.
    García-Suárez EJ; Lara P; García AB; Philippot K
    Recent Pat Nanotechnol; 2013 Nov; 7(3):247-64. PubMed ID: 22946626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Temperature Synthesis of Carbon-Supported Bimetallic Nanocluster Catalysts by Enlarging the Interparticle Distance.
    Zuo LJ; Xu SL; Wang A; Yin P; Zhao S; Liang HW
    Inorg Chem; 2022 Feb; 61(6):2719-2723. PubMed ID: 35108014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bimetallic ruthenium-copper nanoparticles embedded in mesoporous carbon as an effective hydrogenation catalyst.
    Liu J; Zhang LL; Zhang J; Liu T; Zhao XS
    Nanoscale; 2013 Nov; 5(22):11044-50. PubMed ID: 24072134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts.
    Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH
    Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone.
    Luo W; Sankar M; Beale AM; He Q; Kiely CJ; Bruijnincx PC; Weckhuysen BM
    Nat Commun; 2015 Mar; 6():6540. PubMed ID: 25779385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of the Excellent Performance of Ru on Nitrogen-Doped Carbon Nanofibers for CO
    Roldán L; Marco Y; García-Bordejé E
    ChemSusChem; 2017 Mar; 10(6):1139-1144. PubMed ID: 27921378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous catalysis by ultra-small bimetallic nanoparticles surpassing homogeneous catalysis for carbon-carbon bond forming reactions.
    Norouzi N; Das MK; Richard AJ; Ibrahim AA; El-Kaderi HM; El-Shall MS
    Nanoscale; 2020 Oct; 12(37):19191-19202. PubMed ID: 32926030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering catalyst microenvironments for metal-catalyzed hydrogenation of biologically derived platform chemicals.
    Schwartz TJ; Johnson RL; Cardenas J; Okerlund A; Da Silva NA; Schmidt-Rohr K; Dumesic JA
    Angew Chem Int Ed Engl; 2014 Nov; 53(47):12718-22. PubMed ID: 25196504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.