BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35874500)

  • 1. Effect of 3-caffeoyl, 4-dihydrocaffeoylquinic acid from
    Lee GH; Lee SY; Zheng C; Pham HT; Kim CY; Kim MY; Han EH; Hwang YP; Jeong HG
    Toxicol Res; 2022 Jul; 38(3):355-364. PubMed ID: 35874500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rutaecarpine Increases Nitric Oxide Synthesis via eNOS Phosphorylation by TRPV1-Dependent CaMKII and CaMKKβ/AMPK Signaling Pathway in Human Endothelial Cells.
    Lee GH; Kim CY; Zheng C; Jin SW; Kim JY; Lee SY; Kim MY; Han EH; Hwang YP; Jeong HG
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3-Caffeoyl, 4-dihydrocaffeoylquinic acid from Salicornia herbacea inhibits tumor cell invasion by regulating protein kinase C-delta-dependent matrix metalloproteinase-9 expression.
    Hwang YP; Yun HJ; Choi JH; Chun HK; Chung YC; Kim SK; Kim BH; Kwon KI; Jeong TC; Lee KY; Jeong HG
    Toxicol Lett; 2010 Oct; 198(2):200-9. PubMed ID: 20599481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3-Caffeoyl, 4-dihydrocaffeoylquinic acid from Salicornia herbacea attenuates high glucose-induced hepatic lipogenesis in human HepG2 cells through activation of the liver kinase B1 and silent information regulator T1/AMPK-dependent pathway.
    Pil Hwang Y; Gyun Kim H; Choi JH; Truong Do M; Tran TP; Chun HK; Chung YC; Jeong TC; Jeong HG
    Mol Nutr Food Res; 2013 Mar; 57(3):471-82. PubMed ID: 23349077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effect of 3-caffeoyl-4-dicaffeoylquinic acid from Salicornia herbacea against phorbol ester-induced cyclooxygenase-2 expression in macrophages.
    Han EH; Kim JY; Kim HG; Chun HK; Chung YC; Jeong HG
    Chem Biol Interact; 2010 Feb; 183(3):397-404. PubMed ID: 19931518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Betulinic Acid Increases eNOS Phosphorylation and NO Synthesis via the Calcium-Signaling Pathway.
    Jin SW; Choi CY; Hwang YP; Kim HG; Kim SJ; Chung YC; Lee KJ; Jeong TC; Jeong HG
    J Agric Food Chem; 2016 Feb; 64(4):785-91. PubMed ID: 26750873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protective mechanisms of 3-caffeoyl, 4-dihydrocaffeoyl quinic acid from Salicornia herbacea against tert-butyl hydroperoxide-induced oxidative damage.
    Hwang YP; Yun HJ; Chun HK; Chung YC; Kim HK; Jeong MH; Yoon TR; Jeong HG
    Chem Biol Interact; 2009 Oct; 181(3):366-76. PubMed ID: 19647727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Syringaresinol causes vasorelaxation by elevating nitric oxide production through the phosphorylation and dimerization of endothelial nitric oxide synthase.
    Chung BH; Kim S; Kim JD; Lee JJ; Baek YY; Jeoung D; Lee H; Choe J; Ha KS; Won MH; Kwon YG; Kim YM
    Exp Mol Med; 2012 Mar; 44(3):191-201. PubMed ID: 22170035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Far-infrared radiation acutely increases nitric oxide production by increasing Ca(2+) mobilization and Ca(2+)/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179.
    Park JH; Lee S; Cho DH; Park YM; Kang DH; Jo I
    Biochem Biophys Res Commun; 2013 Jul; 436(4):601-6. PubMed ID: 23756809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sesamin Induces Endothelial Nitric Oxide Synthase Activation via Transient Receptor Potential Vanilloid Type 1.
    Pham TH; Jin SW; Lee GH; Park JS; Kim JY; Thai TN; Han EH; Jeong HG
    J Agric Food Chem; 2020 Mar; 68(11):3474-3484. PubMed ID: 32077699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Icariside II induces rapid phosphorylation of endothelial nitric oxide synthase via multiple signaling pathways.
    Song W; Yuan Y; Tan X; Gu Y; Zeng J; Song W; Xin Z; Fang D; Guan R
    PeerJ; 2022; 10():e14192. PubMed ID: 36312762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of pulsatile shear stress on signaling mechanisms controlling nitric oxide production, endothelial nitric oxide synthase phosphorylation, and expression in ovine fetoplacental artery endothelial cells.
    Li Y; Zheng J; Bird IM; Magness RR
    Endothelium; 2005; 12(1-2):21-39. PubMed ID: 16036314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impressic Acid, a Lupane-Type Triterpenoid from
    Jin SW; Pham HT; Choi JH; Lee GH; Han EH; Cho YH; Chung YC; Kim YH; Jeong HG
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31744135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Betulinic Acid Induces eNOS Expression via the AMPK-Dependent KLF2 Signaling Pathway.
    Lee GH; Park JS; Jin SW; Pham TH; Thai TN; Kim JY; Kim CY; Choi JH; Han EH; Jeong HG
    J Agric Food Chem; 2020 Dec; 68(49):14523-14530. PubMed ID: 33232606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2-(2,4-dihydroxyphenyl)-5-(E)-propenylbenzofuran promotes endothelial nitric oxide synthase activity in human endothelial cells.
    Ladurner A; Atanasov AG; Heiss EH; Baumgartner L; Schwaiger S; Rollinger JM; Stuppner H; Dirsch VM
    Biochem Pharmacol; 2012 Sep; 84(6):804-12. PubMed ID: 22771373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MAGI1 Mediates eNOS Activation and NO Production in Endothelial Cells in Response to Fluid Shear Stress.
    Ghimire K; Zaric J; Alday-Parejo B; Seebach J; Bousquenaud M; Stalin J; Bieler G; Schnittler HJ; Rüegg C
    Cells; 2019 Apr; 8(5):. PubMed ID: 31035633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase.
    Hwang YP; Kim HG; Hien TT; Jeong MH; Jeong TC; Jeong HG
    Toxicol Appl Pharmacol; 2011 Nov; 257(1):48-58. PubMed ID: 21884717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The essential role of transient receptor potential vanilloid 1 in simvastatin-induced activation of endothelial nitric oxide synthase and angiogenesis.
    Su KH; Lin SJ; Wei J; Lee KI; Zhao JF; Shyue SK; Lee TS
    Acta Physiol (Oxf); 2014 Nov; 212(3):191-204. PubMed ID: 25183024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p32-Dependent p38 MAPK Activation by Arginase II Downregulation Contributes to Endothelial Nitric Oxide Synthase Activation in HUVECs.
    Koo BH; Won MH; Kim YM; Ryoo S
    Cells; 2020 Feb; 9(2):. PubMed ID: 32046324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arginase II protein regulates Parkin-dependent p32 degradation that contributes to Ca2+-dependent eNOS activation in endothelial cells.
    Koo BH; Won MH; Kim YM; Ryoo S
    Cardiovasc Res; 2022 Mar; 118(5):1344-1358. PubMed ID: 33964139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.