BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 35875197)

  • 1. Tumor extracellular matrix modulating strategies for enhanced antitumor therapy of nanomedicines.
    Li M; Zhang Y; Zhang Q; Li J
    Mater Today Bio; 2022 Dec; 16():100364. PubMed ID: 35875197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioenzyme-based nanomedicines for enhanced cancer therapy.
    Ding M; Zhang Y; Li J; Pu K
    Nano Converg; 2022 Feb; 9(1):7. PubMed ID: 35119544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomedicine Strategies to Circumvent Intratumor Extracellular Matrix Barriers for Cancer Therapy.
    Xu X; Wu Y; Qian X; Wang Y; Wang J; Li J; Li Y; Zhang Z
    Adv Healthc Mater; 2022 Jan; 11(1):e2101428. PubMed ID: 34706400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor-Targeted Nanomedicine for Immunotherapy.
    Cabral H; Kinoh H; Kataoka K
    Acc Chem Res; 2020 Dec; 53(12):2765-2776. PubMed ID: 33161717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting antitumor efficacy of nanoparticles by modulating tumor mechanical microenvironment.
    Zhang X; Zhang X; Yong T; Gan L; Yang X
    EBioMedicine; 2024 Jun; 105():105200. PubMed ID: 38876044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors.
    Han X; Xu Y; Geranpayehvaghei M; Anderson GJ; Li Y; Nie G
    Biomaterials; 2020 Feb; 232():119745. PubMed ID: 31918228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Intracellular Transcytosis of Nanoparticles by Degrading Extracellular Matrix for Deep Tissue Radiotherapy of Pancreatic Adenocarcinoma.
    Wang L; Dou J; Jiang W; Wang Q; Liu Y; Liu H; Wang Y
    Nano Lett; 2022 Sep; 22(17):6877-6887. PubMed ID: 36036792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines.
    Durymanov MO; Rosenkranz AA; Sobolev AS
    Theranostics; 2015; 5(9):1007-20. PubMed ID: 26155316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right.
    Sun D; Zhou S; Gao W
    ACS Nano; 2020 Oct; 14(10):12281-12290. PubMed ID: 33021091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular matrix-degrading STING nanoagonists for mild NIR-II photothermal-augmented chemodynamic-immunotherapy.
    Zhan M; Yu X; Zhao W; Peng Y; Peng S; Li J; Lu L
    J Nanobiotechnology; 2022 Jan; 20(1):23. PubMed ID: 34991618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of peptide coatings that enhance diffusive transport of nanoparticles through the tumor microenvironment.
    Mohanty RP; Liu X; Kim JY; Peng X; Bhandari S; Leal J; Arasappan D; Wylie DC; Dong T; Ghosh D
    Nanoscale; 2019 Oct; 11(38):17664-17681. PubMed ID: 31536061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic Liposome with Surface-Bound Elastase for Enhanced Tumor Penetration and Chemo-Immumotherapy.
    Li YJ; Wu JY; Hu XB; Ding T; Tang T; Xiang DX
    Adv Healthc Mater; 2021 Oct; 10(19):e2100794. PubMed ID: 34160137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining Nanomedicine and Immunotherapy.
    Shi Y; Lammers T
    Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy.
    Henke E; Nandigama R; Ergün S
    Front Mol Biosci; 2019; 6():160. PubMed ID: 32118030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell membrane cloaked nanomedicines for bio-imaging and immunotherapy of cancer: Improved pharmacokinetics, cell internalization and anticancer efficacy.
    Hussain Z; Rahim MA; Jan N; Shah H; Rawas-Qalaji M; Khan S; Sohail M; Thu HE; Ramli NA; Sarfraz RM; Abourehab MAS
    J Control Release; 2021 Jul; 335():130-157. PubMed ID: 34015400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in nanomedicines for photodynamic therapy (PDT)-driven cancer immunotherapy.
    Ji B; Wei M; Yang B
    Theranostics; 2022; 12(1):434-458. PubMed ID: 34987658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation.
    Luan X; Yuan H; Song Y; Hu H; Wen B; He M; Zhang H; Li Y; Li F; Shu P; Burnett JP; Truchan N; Palmisano M; Pai MP; Zhou S; Gao W; Sun D
    Biomaterials; 2021 Aug; 275():120910. PubMed ID: 34144373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anticancer nanomedicines harnessing tumor microenvironmental components.
    Li Y; Chen Z; Gu L; Duan Z; Pan D; Xu Z; Gong Q; Li Y; Zhu H; Luo K
    Expert Opin Drug Deliv; 2022 Apr; 19(4):337-354. PubMed ID: 35244503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient PD-L1 gene silence promoted by hyaluronidase for cancer immunotherapy.
    Guan X; Lin L; Chen J; Hu Y; Sun P; Tian H; Maruyama A; Chen X
    J Control Release; 2019 Jan; 293():104-112. PubMed ID: 30476528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering extracellular matrix to improve drug delivery for cancer therapy.
    He X; Yang Y; Li L; Zhang P; Guo H; Liu N; Yang X; Xu F
    Drug Discov Today; 2020 Sep; 25(9):1727-1734. PubMed ID: 32629171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.