These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 35875470)
1. A high-performance Ni-CeO Sasaki K; Takahashi I; Kuramoto K; Shin-Mura K R Soc Open Sci; 2022 Jul; 9(7):220227. PubMed ID: 35875470 [TBL] [Abstract][Full Text] [Related]
2. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials. Laycock CJ; Staniforth JZ; Ormerod RM Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706 [TBL] [Abstract][Full Text] [Related]
3. A redox-stable efficient anode for solid-oxide fuel cells. Tao S; Irvine JT Nat Mater; 2003 May; 2(5):320-3. PubMed ID: 12692533 [TBL] [Abstract][Full Text] [Related]
5. Microstructure tailoring of the nickel oxide-Yttria-stabilized zirconia hollow fibers toward high-performance microtubular solid oxide fuel cells. Liu T; Ren C; Fang S; Wang Y; Chen F ACS Appl Mater Interfaces; 2014 Nov; 6(21):18853-60. PubMed ID: 25313919 [TBL] [Abstract][Full Text] [Related]
6. Fuel oxidation efficiencies and exhaust composition in solid oxide fuel cells. Pomfret MB; Demircan O; Sukeshini AM; Walker RA Environ Sci Technol; 2006 Sep; 40(17):5574-9. PubMed ID: 16999142 [TBL] [Abstract][Full Text] [Related]
7. Enhanced low-temperature power density of solid oxide fuel cell by nickel nanoparticle infiltration into pre-fired Ni/yttria-stabilized zirconia anode. Kang LS; Park JL; Lee S; Jin YH; Hong HS; Lee CG; Kim BS J Nanosci Nanotechnol; 2014 Dec; 14(12):8974-7. PubMed ID: 25970993 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3-δ anode for direct ammonia-fueled solid oxide fuel cells. Yang J; Molouk AF; Okanishi T; Muroyama H; Matsui T; Eguchi K ACS Appl Mater Interfaces; 2015 Apr; 7(13):7406-12. PubMed ID: 25804559 [TBL] [Abstract][Full Text] [Related]
9. Navigating the future of solid oxide fuel cell: Comprehensive insights into fuel electrode related degradation mechanisms and mitigation strategies. Gohar O; Khan MZ; Saleem M; Chun O; Babar ZUD; Rehman MMU; Hussain A; Zheng K; Koh JH; Ghaffar A; Hussain I; Filonova E; Medvedev D; Motola M; Hanif MB Adv Colloid Interface Sci; 2024 Sep; 331():103241. PubMed ID: 38909547 [TBL] [Abstract][Full Text] [Related]
10. Micro-tubular solid oxide fuel cell based on a porous yttria-stabilized zirconia support. Panthi D; Tsutsumi A Sci Rep; 2014 Aug; 4():5754. PubMed ID: 25169166 [TBL] [Abstract][Full Text] [Related]
11. A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells. Yang J; Molouk AF; Okanishi T; Muroyama H; Matsui T; Eguchi K ACS Appl Mater Interfaces; 2015 Dec; 7(51):28701-7. PubMed ID: 26642379 [TBL] [Abstract][Full Text] [Related]
12. Effects of cobalt addition on the catalytic activity of the Ni-YSZ anode functional layer and the electrochemical performance of solid oxide fuel cells. Guo T; Dong X; Shirolkar MM; Song X; Wang M; Zhang L; Li M; Wang H ACS Appl Mater Interfaces; 2014 Sep; 6(18):16131-9. PubMed ID: 25162913 [TBL] [Abstract][Full Text] [Related]
13. A Direct Wang D; Wong SI; Sunarso J; Xu M; Wang W; Ran R; Zhou W; Shao Z ACS Appl Mater Interfaces; 2021 May; 13(17):20105-20113. PubMed ID: 33886260 [TBL] [Abstract][Full Text] [Related]
14. LaMnO Jia Y; Wei T; Shao Z; Song Y; Huang X; Huang B; Cao C; Zhi Y Molecules; 2024 Aug; 29(15):. PubMed ID: 39125058 [TBL] [Abstract][Full Text] [Related]
15. Tailoring the Microstructure of a Solid Oxide Fuel Cell Anode Support by Calcination and Milling of YSZ. Hanifi AR; Laguna-Bercero MA; Sandhu NK; Etsell TH; Sarkar P Sci Rep; 2016 Jun; 6():27359. PubMed ID: 27270152 [TBL] [Abstract][Full Text] [Related]
16. Performance of a Direct Methane Solid Oxide Fuel Cell Using Nickel-Ceria-Yttria Stabilized Zirconia as the Anode. Escudero MJ; Yeste MP; Cauqui MÁ; Muñoz MÁ Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32012909 [TBL] [Abstract][Full Text] [Related]
17. Self-hydrating of a ceria-based catalyst enables efficient operation of solid oxide fuel cells on liquid fuels. Xu K; Zhang H; Deng W; Liu Y; Ding Y; Zhou Y; Liu M; Chen Y Sci Bull (Beijing); 2023 Nov; 68(21):2574-2582. PubMed ID: 37730510 [TBL] [Abstract][Full Text] [Related]
18. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells. Wang W; Su C; Ran R; Zhao B; Shao Z; Tade MO; Liu S ChemSusChem; 2014 Jun; 7(6):1719-28. PubMed ID: 24798121 [TBL] [Abstract][Full Text] [Related]
19. Rational Design of Superior, Coking-Resistant, Nickel-Based Anodes through Tailoring Interfacial Reactions for Solid Oxide Fuel Cells Operated on Methane Fuel. Qu J; Wang W; Chen Y; Li H; Zhong Y; Yang G; Zhou W; Shao Z ChemSusChem; 2018 Sep; 11(18):3112-3119. PubMed ID: 30039570 [TBL] [Abstract][Full Text] [Related]
20. Synergistic Effects of In-Situ Exsolved Ni-Ru Bimetallic Catalyst on High-Performance and Durable Direct-Methane Solid Oxide Fuel Cells. Liu F; Deng H; Wang Z; Hussain AM; Dale N; Furuya Y; Miura Y; Fukuyama Y; Ding H; Liu B; Duan C J Am Chem Soc; 2024 Feb; 146(7):4704-4715. PubMed ID: 38277126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]