These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 35876248)
1. Enhancement of Proteome Coverage by Ion Mobility Fractionation Coupled to PASEF on a TIMS-QTOF Instrument. Guergues J; Wohlfahrt J; Stevens SM J Proteome Res; 2022 Aug; 21(8):2036-2044. PubMed ID: 35876248 [TBL] [Abstract][Full Text] [Related]
2. Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Meier F; Brunner AD; Koch S; Koch H; Lubeck M; Krause M; Goedecke N; Decker J; Kosinski T; Park MA; Bache N; Hoerning O; Cox J; Räther O; Mann M Mol Cell Proteomics; 2018 Dec; 17(12):2534-2545. PubMed ID: 30385480 [TBL] [Abstract][Full Text] [Related]
3. High-Throughput Mass Spectrometry-Based Proteomics with dia-PASEF. Skowronek P; Meier F Methods Mol Biol; 2022; 2456():15-27. PubMed ID: 35612732 [TBL] [Abstract][Full Text] [Related]
4. Trapped Ion Mobility Spectrometry and Parallel Accumulation-Serial Fragmentation in Proteomics. Meier F; Park MA; Mann M Mol Cell Proteomics; 2021; 20():100138. PubMed ID: 34416385 [TBL] [Abstract][Full Text] [Related]
5. Four-dimensional proteomics analysis of human cerebrospinal fluid with trapped ion mobility spectrometry using PASEF. Mun DG; Budhraja R; Bhat FA; Zenka RM; Johnson KL; Moghekar A; Pandey A Proteomics; 2023 May; 23(10):e2200507. PubMed ID: 36752121 [TBL] [Abstract][Full Text] [Related]
6. Optimizing single cell proteomics using trapped ion mobility spectrometry for label-free experiments. Mun DG; Bhat FA; Ding H; Madden BJ; Natesampillai S; Badley AD; Johnson KL; Kelly RT; Pandey A Analyst; 2023 Jul; 148(15):3466-3475. PubMed ID: 37395315 [TBL] [Abstract][Full Text] [Related]
7. Comparison of Data-Dependent Acquisition, Data-Independent Acquisition, and Parallel Reaction Monitoring in Trapped Ion Mobility Spectrometry-Time-of-Flight Tandem Mass Spectrometry-Based Lipidomics. Rudt E; Feldhaus M; Margraf CG; Schlehuber S; Schubert A; Heuckeroth S; Karst U; Jeck V; Meyer SW; Korf A; Hayen H Anal Chem; 2023 Jun; 95(25):9488-9496. PubMed ID: 37307407 [TBL] [Abstract][Full Text] [Related]
8. Rapid and In-Depth Coverage of the (Phospho-)Proteome With Deep Libraries and Optimal Window Design for dia-PASEF. Skowronek P; Thielert M; Voytik E; Tanzer MC; Hansen FM; Willems S; Karayel O; Brunner AD; Meier F; Mann M Mol Cell Proteomics; 2022 Sep; 21(9):100279. PubMed ID: 35944843 [TBL] [Abstract][Full Text] [Related]
9. Fast Quantitative Analysis of timsTOF PASEF Data with MSFragger and IonQuant. Yu F; Haynes SE; Teo GC; Avtonomov DM; Polasky DA; Nesvizhskii AI Mol Cell Proteomics; 2020 Sep; 19(9):1575-1585. PubMed ID: 32616513 [TBL] [Abstract][Full Text] [Related]
10. Ion mobility-resolved phosphoproteomics with dia-PASEF and short gradients. Oliinyk D; Meier F Proteomics; 2023 Apr; 23(7-8):e2200032. PubMed ID: 36300730 [TBL] [Abstract][Full Text] [Related]
11. Parallel Accumulation-Serial Fragmentation (PASEF): Multiplying Sequencing Speed and Sensitivity by Synchronized Scans in a Trapped Ion Mobility Device. Meier F; Beck S; Grassl N; Lubeck M; Park MA; Raether O; Mann M J Proteome Res; 2015 Dec; 14(12):5378-87. PubMed ID: 26538118 [TBL] [Abstract][Full Text] [Related]
13. Trapped Ion Mobility Spectrometry Reduces Spectral Complexity in Mass Spectrometry-Based Proteomics. Charkow J; Röst HL Anal Chem; 2021 Dec; 93(50):16751-16758. PubMed ID: 34881875 [TBL] [Abstract][Full Text] [Related]
14. Synchro-PASEF Allows Precursor-Specific Fragment Ion Extraction and Interference Removal in Data-Independent Acquisition. Skowronek P; Krohs F; Lubeck M; Wallmann G; Itang ECM; Koval P; Wahle M; Thielert M; Meier F; Willems S; Raether O; Mann M Mol Cell Proteomics; 2023 Feb; 22(2):100489. PubMed ID: 36566012 [TBL] [Abstract][Full Text] [Related]
15. Proteomic datasets of HeLa and SiHa cell lines acquired by DDA-PASEF and diaPASEF. Huang Z; Kong W; Wong BJ; Gao H; Guo T; Liu X; Du X; Wong L; Goh WWB Data Brief; 2022 Apr; 41():107919. PubMed ID: 35198691 [TBL] [Abstract][Full Text] [Related]
16. dia-PASEF data analysis using FragPipe and DIA-NN for deep proteomics of low sample amounts. Demichev V; Szyrwiel L; Yu F; Teo GC; Rosenberger G; Niewienda A; Ludwig D; Decker J; Kaspar-Schoenefeld S; Lilley KS; Mülleder M; Nesvizhskii AI; Ralser M Nat Commun; 2022 Jul; 13(1):3944. PubMed ID: 35803928 [TBL] [Abstract][Full Text] [Related]
17. Vacuum Insulated Probe Heated Electrospray Ionization Source Enhances Microflow Rate Chromatography Signals in the Bruker timsTOF Mass Spectrometer. Midha MK; Kapil C; Maes M; Baxter DH; Morrone SR; Prokop TJ; Moritz RL J Proteome Res; 2023 Jul; 22(7):2525-2537. PubMed ID: 37294184 [TBL] [Abstract][Full Text] [Related]
18. Top-Down Protein Analysis by Tandem-Trapped Ion Mobility Spectrometry/Mass Spectrometry (Tandem-TIMS/MS) Coupled with Ultraviolet Photodissociation (UVPD) and Parallel Accumulation/Serial Fragmentation (PASEF) MS/MS Analysis. Liu FC; Ridgeway ME; Wootton CA; Theisen A; Panczyk EM; Meier F; Park MA; Bleiholder C J Am Soc Mass Spectrom; 2023 Oct; 34(10):2232-2246. PubMed ID: 37638640 [TBL] [Abstract][Full Text] [Related]
19. The Parallel Reaction Monitoring-Parallel Accumulation-Serial Fragmentation (prm-PASEF) Approach for Multiplexed Absolute Quantitation of Proteins in Human Plasma. Brzhozovskiy A; Kononikhin A; Bugrova AE; Kovalev GI; Schmit PO; Kruppa G; Nikolaev EN; Borchers CH Anal Chem; 2022 Feb; 94(4):2016-2022. PubMed ID: 35040635 [TBL] [Abstract][Full Text] [Related]
20. A hybrid DDA/DIA-PASEF based assay library for a deep proteotyping of triple-negative breast cancer. Lapcik P; Synkova K; Janacova L; Bouchalova P; Potesil D; Nenutil R; Bouchal P Sci Data; 2024 Jul; 11(1):794. PubMed ID: 39025866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]