BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 35876486)

  • 1. The pleiotropic roles of SPT5 in transcription.
    Song A; Chen FX
    Transcription; 2022; 13(1-3):53-69. PubMed ID: 35876486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting Spt5-Pol II by Small-Molecule Inhibitors Uncouples Distinct Activities and Reveals Additional Regulatory Roles.
    Bahat A; Lahav O; Plotnikov A; Leshkowitz D; Dikstein R
    Mol Cell; 2019 Nov; 76(4):617-631.e4. PubMed ID: 31564557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest.
    Crickard JB; Fu J; Reese JC
    J Biol Chem; 2016 May; 291(19):9853-70. PubMed ID: 26945063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs.
    Wada T; Takagi T; Yamaguchi Y; Ferdous A; Imai T; Hirose S; Sugimoto S; Yano K; Hartzog GA; Winston F; Buratowski S; Handa H
    Genes Dev; 1998 Feb; 12(3):343-56. PubMed ID: 9450929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging Roles of SPT5 in Transcription.
    Pandey V; Punniyamoorthy S; Pokharel YR
    Cell Physiol Biochem; 2023 Oct; 57(5):395-408. PubMed ID: 37876219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of Transcription Elongation Factor DSIF (Spt4-Spt5).
    Decker TM
    J Mol Biol; 2021 Jul; 433(14):166657. PubMed ID: 32987031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Regions in the Spt5 Subunit of DRB Sensitivity-inducing Factor (DSIF) That Are Involved in Promoter-proximal Pausing.
    Qiu Y; Gilmour DS
    J Biol Chem; 2017 Mar; 292(13):5555-5570. PubMed ID: 28213523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast transcription elongation factor Spt5 associates with RNA polymerase I and RNA polymerase II directly.
    Viktorovskaya OV; Appling FD; Schneider DA
    J Biol Chem; 2011 May; 286(21):18825-33. PubMed ID: 21467036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SPT5 stabilizes RNA polymerase II, orchestrates transcription cycles, and maintains the enhancer landscape.
    Hu S; Peng L; Xu C; Wang Z; Song A; Chen FX
    Mol Cell; 2021 Nov; 81(21):4425-4439.e6. PubMed ID: 34534457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae.
    Hartzog GA; Wada T; Handa H; Winston F
    Genes Dev; 1998 Feb; 12(3):357-69. PubMed ID: 9450930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPRi-mediated depletion of Spt4 and Spt5 reveals a role for DSIF in the control of HIV latency.
    Krasnopolsky S; Novikov A; Kuzmina A; Taube R
    Biochim Biophys Acta Gene Regul Mech; 2021 Jan; 1864(1):194656. PubMed ID: 33333262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD.
    Schneider S; Pei Y; Shuman S; Schwer B
    Mol Cell Biol; 2010 May; 30(10):2353-64. PubMed ID: 20231361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The transcription elongation factor Spt5 influences transcription by RNA polymerase I positively and negatively.
    Anderson SJ; Sikes ML; Zhang Y; French SL; Salgia S; Beyer AL; Nomura M; Schneider DA
    J Biol Chem; 2011 May; 286(21):18816-24. PubMed ID: 21467039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair.
    Ding B; LeJeune D; Li S
    J Biol Chem; 2010 Feb; 285(8):5317-26. PubMed ID: 20042611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins.
    Lindstrom DL; Squazzo SL; Muster N; Burckin TA; Wachter KC; Emigh CA; McCleery JA; Yates JR; Hartzog GA
    Mol Cell Biol; 2003 Feb; 23(4):1368-78. PubMed ID: 12556496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation.
    Guo M; Xu F; Yamada J; Egelhofer T; Gao Y; Hartzog GA; Teng M; Niu L
    Structure; 2008 Nov; 16(11):1649-58. PubMed ID: 19000817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of RNA polymerase II processivity by Spt5 is restricted to a narrow window during elongation.
    Fitz J; Neumann T; Pavri R
    EMBO J; 2018 Apr; 37(8):. PubMed ID: 29514850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster.
    Kaplan CD; Morris JR; Wu C; Winston F
    Genes Dev; 2000 Oct; 14(20):2623-34. PubMed ID: 11040216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SPT5 stabilization of promoter-proximal RNA polymerase II.
    Aoi Y; Takahashi YH; Shah AP; Iwanaszko M; Rendleman EJ; Khan NH; Cho BK; Goo YA; Ganesan S; Kelleher NL; Shilatifard A
    Mol Cell; 2021 Nov; 81(21):4413-4424.e5. PubMed ID: 34480849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MYC Recruits SPT5 to RNA Polymerase II to Promote Processive Transcription Elongation.
    Baluapuri A; Hofstetter J; Dudvarski Stankovic N; Endres T; Bhandare P; Vos SM; Adhikari B; Schwarz JD; Narain A; Vogt M; Wang SY; Düster R; Jung LA; Vanselow JT; Wiegering A; Geyer M; Maric HM; Gallant P; Walz S; Schlosser A; Cramer P; Eilers M; Wolf E
    Mol Cell; 2019 May; 74(4):674-687.e11. PubMed ID: 30928206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.