These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35876626)

  • 1. Trace metals at the frontline of pathogen defence responses in non-hyperaccumulating plants.
    Morina F; Küpper H
    J Exp Bot; 2022 Nov; 73(19):6516-6524. PubMed ID: 35876626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?
    Rascio N; Navari-Izzo F
    Plant Sci; 2011 Feb; 180(2):169-81. PubMed ID: 21421358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?
    Schröder P; Lyubenova L; Huber C
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):795-804. PubMed ID: 19462193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant.
    Stolpe C; Giehren F; Krämer U; Müller C
    Phytochemistry; 2017 Jul; 139():109-117. PubMed ID: 28437705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The current status of the elemental defense hypothesis in relation to pathogens.
    Hörger AC; Fones HN; Preston GM
    Front Plant Sci; 2013 Oct; 4():395. PubMed ID: 24137169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Essential trace metals in plant responses to heat stress.
    Hendrix S; Verbruggen N; Cuypers A; Meyer AJ
    J Exp Bot; 2022 Mar; 73(6):1775-1788. PubMed ID: 35018415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation.
    Yang X; Feng Y; He Z; Stoffella PJ
    J Trace Elem Med Biol; 2005; 18(4):339-53. PubMed ID: 16028496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Closely-related species of hyperaccumulating plants and their ability in accumulation of As, Cd, Cu, Mn, Ni, Pb and Zn.
    Xu W; Xiang P; Liu X; Ma LQ
    Chemosphere; 2020 Jul; 251():126334. PubMed ID: 32169705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implications of metal accumulation mechanisms to phytoremediation.
    Memon AR; Schröder P
    Environ Sci Pollut Res Int; 2009 Mar; 16(2):162-75. PubMed ID: 19067014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divergent biology of facultative heavy metal plants.
    Bothe H; Słomka A
    J Plant Physiol; 2017 Dec; 219():45-61. PubMed ID: 29028613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants.
    Sytar O; Ghosh S; Malinska H; Zivcak M; Brestic M
    Physiol Plant; 2021 Sep; 173(1):148-166. PubMed ID: 33219524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal crossroads in plants: modulation of nutrient acquisition and root development by essential trace metals.
    Lešková A; Javot H; Giehl RFH
    J Exp Bot; 2022 Mar; 73(6):1751-1765. PubMed ID: 34791130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of transition metals on bacterial plant disease.
    Fones H; Preston GM
    FEMS Microbiol Rev; 2013 Jul; 37(4):495-519. PubMed ID: 23020129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competition for light induces metal accumulation in a metal hyperaccumulating plant.
    Mohiley A; Tielbörger K; Weber M; Clemens S; Gruntman M
    Oecologia; 2021 Sep; 197(1):157-165. PubMed ID: 34370097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system.
    Milner MJ; Kochian LV
    Ann Bot; 2008 Jul; 102(1):3-13. PubMed ID: 18440996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadmium hyperaccumulation as an inexpensive metal armor against disease in Crofton weed.
    Dai ZC; Cai HH; Qi SS; Li J; Zhai DL; Wan JSH; Du DL
    Environ Pollut; 2020 Dec; 267():115649. PubMed ID: 33254657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals.
    Miransari M
    Biotechnol Adv; 2011; 29(6):645-53. PubMed ID: 21557996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local adaptation is associated with zinc tolerance in Pseudomonas endophytes of the metal-hyperaccumulator plant Noccaea caerulescens.
    Fones HN; McCurrach H; Mithani A; Smith JA; Preston GM
    Proc Biol Sci; 2016 May; 283(1830):. PubMed ID: 27170725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncoupling of reactive oxygen species accumulation and defence signalling in the metal hyperaccumulator plant Noccaea caerulescens.
    Fones HN; Eyles CJ; Bennett MH; Smith JAC; Preston GM
    New Phytol; 2013 Sep; 199(4):916-924. PubMed ID: 23758201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.